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1. Electronic spin resonance and spin-or bit interaction.

Standard ESR
Zeeman splitting

Degenerate %same
orbital states al states AEz - g,uBB

*The ac field realizing transition between Zeeman sublevels must have
non-zero average over the orbital state

o [ts frequency must be w, = E, — 948,

Independently on orbital state

Very sharp resonance!
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What is spoiled by SOI?

Effective magnetic field depends on electron momentum

H, = —g;Bs-- Zeeman Hamiltonian for a single electron

Dresselhaus interaction in a bulk superconductor with cubic rotational
symmetry and violated inversion symmetry:

H, =B, (p)  Boc=P(Py—pi)-.

Each momentum has its own spin-flip energy.
Resonance is smeared out.
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2. Electronic spectrum and eigenstatesin 2 and 1 dimensions

Rashba Spin-Orbit Hamiltonian

Violated reflection symmetry
Hp,=a(zxp)s
Equivalent form:

H.=a(o,p,-0o,p,)

Can be regulated by gate voltage
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Total Hamiltonian in 2d: H :%+a(2><p)a
p2
Spectrum:gpa :2—+O’p0; og=%x1- Chlrallty
| m
0':\+T
/ o=-1
2 2
Fermi circles: P, +anp, :&—ap_
En | am p.—p, =2ma
7T pf+ p_2 2 2 2
=n - densit p_+ P, =2 pPr —mMa
(2777’2)2 y \/ F
pZ =27mmh’*n

Fermi momentum at zero Rashba energy
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Spin-flip: Spin-flip energy: &y ~&,- =20°P

o=+1
\ States able to perform spin-flip are located in
/ o =-1 the circular ring between two Fermi-circles

P_

Chiral resonance at zero temperature
A. Shekhter, M. Khodas and A.M. Finkelstein, 2006

2
2mal p, @2 =

Dresselhausinterferes: H, :ﬁ(dxpx—dypy) Aw, =J1+0 -J1-0

W
He +H, =0, (ap,+Bp,)-0,(ap,+Bp,) g
_p’ 2. 2 : . s_ 2af Strong anisotropic
£ _=—+0Ja’+ 1+0sin2p; o0= :
> 2m Bpy ¥ a’+ f° broadening of resonance!
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SOI in Quantum Wires

Quantization of transverse motion. One-component embom.

Hy :a(axpy —O'ypx) — —apo,
I_ID

:ﬁ(axpx_aypy) — [P0,
He+H, = p(ao, + Bo,)

Direction of effective field does not
depend on the value of momentum
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H=F 4 p(aay+,8cfx):2i+ypcw y=ia’+ B

( , J Spin direction axis

X

Spectrum:  &,, =——=typo \
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O = x1-- spin variable

Fer mi-points P,, Por = PeT —MyO

I =21 -- right or left movers

Spin-flip process
e
\
\\\ “ Spin-flip energy:
\\ .
SR, = « (p)=2/|p
p__ P.. Resonance frequency:
p+— oo p—+ 2
\ T Wy =P
h
Spin-flips are possible Resonance width:
Aw, _ 2my
Thetemperature smearing of Fermi boundaries Ws Pr

must belessthan P_, = P,, =2my == T <2p.y
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3. Resonant heating and gener ation of per manent

magnetization
Linearly polarized ac magnetic field (along z-axis)

P | P.. p_ | P..
p+_oI- | T p_. p+_T | 'L p_.

Zero total magnetization
Absorbed energy per particle in singlB&y = 2yp. min(wr, ,1)
occupied interval:

w is the spin-flip rate due to ac fieldfy Is spin-relaxation time
2y

Absorbed energy per any particlg;,, = EY = 4my? min(wr ,J)
. E.. E.c£ 7
Resonant heatingAT =—2* === 22yp, min(wr, ,.J Wy <17

RH can be found by measurement of the wire resistance
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Circularly polarized ac magnetic field (in the pdan
perpendicular to effective magnetic field)

b, o leP= l p”ol' b, p.oleP= l oo p,

Ground state Excited state

Circularly polarized ac field changes spin projection by!

It generates permanent magnetizatiol] = g4 per a single occupied
momentum.

M = g,uBz—ymin(vvrg ,1) per any particle.

F
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3. Resonant generation of permanent currentsby ac

magnetic field
Linearly polarized ac magnetic field (along z-axis)

P | P.. p_ | P..
p+_oI- | T p_. rulo | .I. p_.

hole particle
—n p,, | — Velocity of hole is opposite to
P.- — P_. velocity of particle with the same
< <
momentum.
particle hole
Excitations

Spins up move right, spins down move |gf—

Permanent spin current. No electric current
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Reduced by the back scattering
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Circularly polarized ac magnetic field (in the pdan
perpendicular to effective magnetic field)

p+_ip“ I p**ol' P, o ] o %»ILH

Ground state Excited state

0} These two currents compensate each other

Per manent completely polarized
electric current

Suppressed by back scattering

I =2en, yr,w= eanZTbW/VF
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This mechanism of the permanent current generaipossible in
1d systems only in contrast to the known photo-galveffiect (PGE)
(E.l. lvchenko and G.E. Pikus, 1978; V.l. BelinichE978).

It is possible in non-degenerate electron gas,til@gher temperatures,
Then it is not resonant.
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4. Relaxation processes
Spin relaxation

. \ @
Dyakonov-Perel’ mechanism /S \
P p'
/Sl

Elastic impurity scattering in 2 and 3 d:
Spin eigenstates before and after scattering T
are not orthogonal.

D-P mechanism does not work in 1d since the l
spin states are orthogonal due to invariant divecti
of effective magnetic field.

Spin-flip time in phonon processes? - 3ms if the wire is acoustically insulat
10°®s if the wire has ideal acoustic corttadth the bulk substra

Spin-flip time at magnetic ] 3ms at concentration of magnetic impuriti#d°cm™ and
Impurities scattering: cross section area of the wire fom?

All numerical calculations for InGaAs
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Energy relaxation

Electron-electron and electron-hole interaction

Decay of a particle into two particles and one he®rbidden

Decay of a particle into three particles and twiesas very slow
due to small statistical weight of the final statés-rp..)*

Khodas, Pustylnik, Kamenev, Glazman, 2007

Numerically: 7" 0 0.25ms

Electron-phonon interaction
Acoustically insulated wire: 75" 110™s

Wire acoustically connected with the bullg;(g:h) 110%3s

Energy relaxation is much faster than the spin redation
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Resonance spin-flip rate:W( p) = ghélB P (Fermi Golden Rule)

h

Spectral intensity of the ac magnetic fields = | B (t) B(0)e™d

IQ

2
For simplicity: €2, = @ :yTpF
NQO = Awsr = %

Q

ForIn,GaAs «, =0.7x10°s " ;Aw, = 2 10's™ w=4x10 BZ(GZ) st
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A source of 1kW at a distance 1mm gi®s33&, w=1.3x10s™

M. Sherwin, Natur&?20, 131 (2002); A. Deminger and A.S. Renner, LaseuBdNorld,
Jan. 2008, p. 111; M.C. Hoffman et al., arXiv 02%4.6.MW power was achieved.

Spin-flip probability Ps =Wr¢ is about 1 for acoustically insulated wire

n :nz—y

W, =10° at power 1kW

|, =en,V; (wry) = 2eny(wr, ) = 1pA for InGaAs
How can the current be increase_d?
) B
Narrow spectral widthQ: |, )

Increasing density and SOI by the gate voltage
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5. Influence of per manent external fields

Permanent magnetic field

2
E oo =2p—m+0\/(yp— gtH. ) +(9H:)’

Wy = 2\/(pr _gluBHD)Z +(quBHD)2 I'h

Gate voltage n,a,gl] A+B\V,

| =en v, (VVTB) = 2en y(WTB) --sensitive to the gate voltage.
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6. Conclusions

« In a quantum wire a permanent direction of effec®0 magnetic field
together with Fermi-degeneration enables a narramrsgonance even in
the absence of external magnetic field.

» The resonance frequency is typically in terahertmoreg

» The relative resonance width linearly depends orRéhba-Dresselhaus
constants.

At any polarization ac field heats the wire resonantl

* Linearly polarized ac magnetic field with a resorfaauency generates
a permanent spin current in the wire.

o Circularly polarized ac magnetic field with a resanfiequency generates
a permanent magnetization and completely spin-@adrelectric current
In the wire.

» Experimental observation of the resonant heatingn@@zation and

permanent currents is feasible in an acousticallylatsd wire.
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