

Landau-Khalatnikov hydrodynamics &

phenomenology of dark energy

Helsinki U. of Technology

G. Volovik

Landau Institute

Khalatnikov-90, Chernogolovka October 23, 2009

RUSSIAN ACADEMY OF SCIENCES L.D Landau INSTITUTE FOR THEORETICAL PHYSICS

- **1.** Quantum vacuum & matter: two fluid hydrodynamics
- 2. Quantum vacuum as Lorentz invariant medium
- **3.** Hydrodynamics and thermodynamics of quantum vacuum
- 4. Relaxation of vacuum energy
- 5. Problem of remnant cosmological constant
- 6. Osmotic pressure of matter in quantum vacuum

cosmological constant Λ is possible candidate for dark energy $\Lambda = \, \epsilon_{Dark \; Energy}$

Cosmological constant paradox

$$\Lambda_{observation} = \varepsilon_{Dark \ Energy} \sim 2-3 \ \varepsilon_{DM} \sim 10^{-47} \ GeV^4$$

$$\Lambda_{theory} = \varepsilon_{zero \ point \ energy} \sim E_{Planck}^4 \sim 10^{76} \ GeV^4$$

$$\Lambda_{observation} \sim 10^{-123} \Lambda_{Theory}$$

$$Ioo \ bad \ for \ theory$$

$$Ioo \ for \ for \ theory$$

$$Ioo \ for \ theory$$

$$Ioo \ for \$$

$$\Lambda_{\rm exp} \sim 2-3 \ \epsilon_{\rm Dark \ Matter} \sim 10^{-123} \Lambda_{\rm bare}$$

$$\Lambda_{\rm bare} \sim \epsilon_{\rm zero \ point}$$

*it is easier to accept that $\Lambda = 0$ than 123 orders smaller

$$\frac{1}{0} = 0$$

*Polyakov conjecture: dynamical screeneng of Λ by infrared fluctuations of metric A.M. Polyakov Phase transitions and the Universe, UFN **136**, 538 (1982) De Sitter space and eternity, Nucl. Phys. **B 797**, 199 (2008)

*Dynamical evolution of Λ similar to that of gap Δ in superconductors after kick

V. Gurarie, Nonequilibrium dynamics of weakly and strongly paired superconductors: 0905.4498 A.F. Volkov & S.M. Kogan, JETP **38**, 1018 (1974) Barankov & Levitov, ...

what is natural value of cosmological constant ?

$$\Lambda = E_{\text{Planck}}^4 \qquad \Lambda = 0 \qquad 7$$

time dependent cosmological constant

$$\Lambda \sim E_{\text{Planck}}^4$$

could be in early Universe

equation for superfluid velocity

$$\mathbf{\dot{v}}_{s} + \nabla \left(\mathbf{\mu} + \mathbf{v}_{s}^{2}/2 \right) = 0$$

equation for mass density

$$\mathbf{\hat{\rho}} + \nabla \cdot (\mathbf{\rho} \mathbf{v}_{s} + \mathbf{P}^{Matter}) = 0$$

Einstein equations for metric field

$$\frac{1}{8\pi G} (R_{\mu\nu} - g_{\mu\nu}R/2) = \Lambda g_{\mu\nu} + T_{\mu\nu}^{Matter}$$

equation for quantum vacuum

what is ρ in quantum vacuum?

equation
for phonons
$$T^{\mu\nu}_{;\nu Matter} = 0$$
 equation
for matter

how to describe quantum vacuum & vacuum energy Λ ?

- * quantum vacuum has equation of state w=-1
- * quantum vacuum is Lorentz-invariant
- * quantum vacuum is a self-sustained medium, which may exist in the absence of environment
- st for that, vacuum must be described by conserved charge q
 - Q is analog of particle density \mathcal{N} in liquids

relativistic invariant conserved charges q

$$\nabla_{\alpha} q^{\alpha\beta} = 0$$

$$\nabla_{\alpha} q^{\alpha\beta\mu\nu} = 0$$

$$q^{\alpha\beta} = q \ g^{\alpha\beta}$$

$$q^{\alpha\beta\mu\nu} = q e^{\alpha\beta\mu\nu}$$

Duff & van Nieuwenhuizen *Phys. Lett.* **B 94,** 179 (1980)

impossible

$$\nabla_{\alpha} q^{\alpha} = 0 \qquad \qquad q^{\alpha} = ?$$

examples of vacuum variable q

gluon condensates in QCD

Einstein-aether theory (T. Jacobson, A. Dolgov)

$$\nabla_{\mu}u_{\nu} = q g_{\mu\nu}$$

thermodynamics in flat space the same as in cond-mat

$$\begin{array}{l} \begin{array}{l} \mbox{conserved}\\ \mbox{charge } Q \end{array} & \mathcal{Q} = \int dV \, q \end{array}$$

$$\begin{array}{l} \mbox{thermodynamic}\\ \mbox{potential} \end{array} & \Omega = E - \mu Q = \int dV \left(\varepsilon \left(q \right) - \mu q \right) \end{array} \begin{array}{l} \mbox{Lagrange multiplier}\\ \mbox{or chemical potential } \mu \end{array}$$

$$\begin{array}{l} \mbox{pressure}\\ \mbox{} E = - \frac{dE}{dV} = -\varepsilon + q \, d\varepsilon/dq \\ \mbox{} E = V \, \varepsilon (Q/V) \end{array}$$

$$d\Omega/dq = 0$$

equilibrium vacuum

$$d\epsilon/dq = \mu$$

equilibrium self-sustained vacuum

$$\frac{d\varepsilon}{dq} = \mu$$

$$\varepsilon - q \frac{d\varepsilon}{dq} = -P = 0$$

vacuum energy & cosmological constant

equilibrium self-sustained vacuum

$$d\varepsilon/dq = \mu$$

$$\varepsilon - q \ d\varepsilon/dq = -P = 0$$

$$equation of state$$

$$P = -\Omega$$

$$Cosmological constant$$

$$A = \Omega = \varepsilon - \mu \ q$$

$$Cosmological constant$$

$$A = \varepsilon - \mu \ q = 0$$

$$Cosmological constant$$

dynamics of q in flat space whatever is the origin of q the motion equation for q is the same

action $S = \int dV \, dt \, \varepsilon \, (q)$ motion equation $\nabla_{\kappa} \left(d\varepsilon/dq \right) = 0$ solution $d\varepsilon/dq = \mu$

integration constant μ in dynamics becomes chemical potential in thermodynamics

4-form field $F_{\kappa\lambda\mu\nu}$ as an example of conserved charge q in relativistic vacuum

$$q^{2} = -\frac{1}{24} F_{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu} F^{\kappa\lambda\mu\nu}$$

$$F_{\kappa\lambda\mu\nu} = \nabla_{[\kappa} A_{\lambda\mu\nu]}$$

$$F^{\kappa\lambda\mu\nu} = q e^{\kappa\lambda\mu\nu}$$

$$Maxwell equation$$

$$\nabla_{\kappa} (F^{\kappa\lambda\mu\nu} q^{-1}d\epsilon/dq) = 0$$

$$\nabla_{\kappa} (d\epsilon/dq) = 0$$

general dynamics of q in curved space

action

$$S = \int d^4 x \, (-g)^{1/2} \left[\epsilon (q) + K(q)R \right] + S_{\text{matter}}$$

gravitational coupling K(q) is determined by vacuum and thus depends on vacuum variable q

case of *K*=*const* **restores original Einstein equations**

$$K = \frac{1}{16\pi G} \qquad G - \text{Newton constant}$$

motion
equation
original
Einstein
equations
$$\frac{1}{16\pi G} (Rg_{\mu\nu} - 2R_{\mu\nu}) + \Lambda g_{\mu\nu} = T_{\mu\nu} \qquad \Lambda = \varepsilon - \mu q$$

 Λ - cosmological constant

Minkowski solution

Minkowski
vacuum
solution
$$R = 0$$
 $d\varepsilon/dq = \mu$ vacuum energy in action: $\varepsilon (q) \sim E_{Planck}^4$ $\Lambda = \varepsilon(q) - \mu q = 0$ thermodynamic vacuum energy: $\varepsilon - \mu q = 0$

Model vacuum energy

$$\varepsilon(q) = \frac{1}{2\chi} \left(-\frac{q^2}{q_0^2} + \frac{q^4}{3q_0^4} \right)$$

Minkowski vacuum (q-independent properties)

$$P_{\text{vac}} = - \frac{dE}{dV} = - \Omega_{\text{vac}}$$

 $\chi_{\text{vac}} = -(1/V) \frac{dV}{dP}$
compressibility of vacuum

$$<(\Delta P_{\rm vac})^2 > = T/(V\chi_{\rm vac})$$
$$<(\Delta\Lambda)^2 > = <(\Delta P)^2 >$$
pressure fluctuations

natural value of Λ determined by macroscopic physics

$$\Lambda = 0$$

natural value of χ_{vac} determined by microscopic physics

 $\chi_{\rm vac} \sim E^{-4}$

Planck

 $V > T_{\rm CMB} / (\Lambda^2 \chi_{\rm vac})$

 $V > 10^{28} V_{\rm hor}$

dynamics of q in curved space: relaxation of Λ

$$\begin{array}{l} \textbf{motion} \\ \textbf{equation} \\ \textbf{equation} \\ \end{array} \quad d\varepsilon/dq + R \ dK/dq = \mu \\ \\ \textbf{Einstein} \\ \textbf{equations} \\ \end{array} \quad K(Rg_{\mu\nu} - 2R_{\mu\nu}) + g_{\mu\nu} \Lambda(q) - 2(\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\nabla^{\lambda}\nabla_{\lambda}) K = T_{\mu\nu}^{\text{matter}} \\ \\ \Lambda(q) = \varepsilon(q) - \mu_0 q \end{array}$$

dynamic solution: approach to equilibrium vacuum

$$q(t) - q_0 \sim q_0 \frac{\sin \omega t}{t} \qquad \Lambda(t) \sim \omega^2 \frac{\sin^2 \omega t}{t^2} \qquad H(t) = \frac{\dot{a}(t)}{a(t)} = \frac{2}{3t} \left(1 - \cos \omega t\right)$$
$$\omega \sim E_{\text{Planck}}$$

similar to scalar field with mass $M \sim E_{\text{Planck}}$ A.A. Starobinsky, Phys. Lett. **B 91**, 99 (1980)

Relaxation of Λ (generic q-independent properties)

natural solution of the main cosmological problem ?

A relaxes from natural Planck scale value to natural zero value ∽

present value of Λ

coincides with present value of dark energy *something to do with coincidence problem ?*

Dynamical evolution of Λ similar to that of gap Δ in superconductors after kick

$$\Lambda(t) \sim \omega^2 \, \frac{\sin^2 \omega t}{t^2}$$

 $\omega \sim E_{\text{Planck}}$

F.R. Klinkhamer & G.E. Volovik Dynamic vacuum variable & equilibrium approach in cosmology PRD **78**, 063528 (2008) Self-tuning vacuum variable & cosmological constant, PRD **77**, 085015 (2008)

nonequilibrium vacuum with $\Lambda \sim E_{\text{Planck}}^4$

superconductor with nonequilibrium gap Δ

dynamics of Δ in superconductor

$$\delta |\Delta(t)|^2 \sim \omega^{3/2} \frac{\sin \omega t}{t^{1/2}}$$

$$\omega = 2\Delta$$

$$t = 0$$

$$t = +\infty$$

intial states:

final states:

equilibrium vacuum with $\Lambda = 0$

ground state of superconductor

$$\varepsilon(t) - \varepsilon_{\rm vac} \sim \omega \; \frac{\sin^2 \omega t}{t}$$

V. Gurarie, Nonequilibrium dynamics of weakly and strongly paired superconductors: 0905.4498 A.F. Volkov & S.M. Kogan, JETP **38**, 1018 (1974) Barankov & Levitov, ... properties of relativistic quantum vacuum as a self-sustained system

* quantum vacuum is characterized by conserved charge q

 \boldsymbol{q} has Planck scale value in equilibrium

* vacuum energy has Planck scale value in equilibrium

but this energy is not gravitating

* gravitating energy is thermodynamic vacuum energy

$$\Omega(q) = \varepsilon - q \, d\varepsilon/dq$$

* thermodynamic energy of equilibrium vacuum

$$\epsilon(q) \sim E_{\text{Planck}}^4$$

$$T_{\mu\nu} = \Lambda g_{\mu\nu} \neq \varepsilon(q) g_{\mu\nu}$$

$$T_{\mu\nu} = \Lambda g_{\mu\nu} = \Omega(q) g_{\mu\nu}$$

$$\int_{\mathbf{n}}^{\mathbf{y}} \Omega(q_0) = \varepsilon(q_0) - q_0 \, d\varepsilon/dq_0 = 0$$

matter in the box

matter

N particles

vacuum is outside and inside too:

vacuum may penetrate the wall of the box, but not matter

analog: dilute ³He in superfluid ⁴He

superleak is porous material

superfluid ⁴He is outside and inside too:

vacuum (superfluid ⁴He) may penetrate superleak, but not matter (³He atoms)

> Khalatninkov "Theory of superfluidity" Chapter XVI Theory of Fermi-Bose Quantum Liquids

chemical potential of superfluid ⁴He **is the same across the superleak**

chemical potential of vacuum is the same across the wall

pressure of superfluid ⁴He **inside the box**

$$P_4 = - (1/2)\chi_4 [n_4 \, d\varepsilon_3 \, / \, dn_4]^2$$

pressure of vacuum inside the box

$$P_{\rm vac} = - (1/2) \chi_{\rm vac} \left[q \, d\varepsilon_{\rm mat} / dq \right]^2$$

$$\chi = -(1/V) \, dV/dP$$

compressibility

$$1/\chi_{\rm vac} = q^2 d^2 \varepsilon_{\rm vac} / dq^2$$

conclusion

* quantum vacuum is relativistic invariant self-sustained medium

- * quantum vacuum of early Universe belongs to nontrivial topological class of chiral Fermi systems with Fermi points
- * quantum vacuum of present Universe belongs to nontrivial class of topological insulators
- * Universe experienced metal-insulator topological transition