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Motivation

There are two most important classes of
cosmological solutions.

The Friedmann-Robertson-Walker isotropic
cosmological models, which constitute a basis for
comparison of theoretical predictions with
observations .

The anisotropic Kasner solution for the empty
Bianchi-I universe. Its importance is connected with
its role in the description of the oscillatory approach
to the cosmological singularity BKL.



The Heckmann - Schucking anisotropic solution for

the Bianchi-I universe in the presence of the

dust-like matter constitutes a bridge between these

two types of the cosmological solutions: in the

vicinity of the cosmological singularity it behaves as

a Kasner universe, while at the later stage of the

cosmological evolution it behaves as an isotropic

flat Friedmann Universe.



The Heckmann-Schucking solution has the following form: for
the Bianchi-I universe with the metric

ds2 = dt2 − a2(t)dx2 − b2(t)dy 2 − c2(t)dz2

filled with dust whose equation of state is

p = 0

a(t) = a0t
p1(t + t0)

2/3−p1 ,

b(t) = b0t
p2(t + t0)

2/3−p2 ,

c(t) = c0t
p3(t + t0)

2/3−p3 ,

The exponents p1, p2 and p3 are the Kasner exponents:

p1 + p2 + p3 = 1,

p2
1 + p2

2 + p2
3 = 1.

Usually the Kasner exponents are arranged in such a way that

p1 ≤ p2 ≤ p3



In our paper (I.M. Khalatnikov and A.Yu.
Kamenshchik, 2003) the Heckmann-Schucking
solution was generalized on the case of the Bianchi-I
universe filled with a mixture of three perfect fluids:
dust, stiff matter with the equation of state p = ρ,
dust and a positive cosmological constant.

Why a positive cosmological constant is of interest ?

The recent discovery of the phenomenon of the
cosmic acceleration.

Inflationary cosmology.



Why a negative cosmological constant might be of
interest ?

It is compatible with the supersymmetry.

It could be reconciled with modern observations.

It implies a cosmological scenario, where the present
expansion of the universe is followed by a
contraction, ending in a Big Crunch cosmological
singularity. Thus, one has a universe, existing during
a finite period of cosmic time between two
cosmological singularities.



Model

The Bianchi-I universe filled with three fluids: dust,
stiff matter and a negative cosmological constant
with the equation of motion:

p = −ρ, ρ = −Λ, Λ > 0.



The construction of the solution

a(t) = R(t) exp(−2α(t)),

b(t) = R(t) exp(α(t)− β(t)),

c(t) = R(t) exp(α(t) + β(t)),

R(t) is the conformal factor,
α(t) and β(t) characterize the anisotropy of the
model.
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Using the isotropy of the energy-momentum tensor one has
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1 = R2

2 = R3
3 .
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Ṙ

R
α̇ = 0,

β̈ + 3
Ṙ
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The 00 component of the Einstein equations has now the form

Ṙ2

R2
= α̇2 +

β̇2

3
+

4πG

3
ρ.

The effective Friedmann equation
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M
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,
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0 +
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0

3
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R3(t) =
M
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+

√
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Λ
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√
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√
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.

The Big Crunch singularity is encountered at
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The integration constant is chosen in such a way to provide a
Kasner-type behaviour of the function α(t) in the
neighbourhood of the Big Bang singularity.
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At small values of t:

a(t) ∼ tp1 ,

b(t) ∼ tp2 ,

c(t) ∼ tp3 ,

p1 =
1

3
− 2α0

3
√

S0

,

p2 =
1

3
+

α0 − β0

3
√

S0

,

p3 =
1

3
+
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3
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.

p1 + p2 + p3 = 1.



p2
1 + p2

2 + p2
3 = 1− q2,

q2 =
2S

3S0
=

2S

3
(
S + α2

0 +
β2

0

3

) ,

where
0 ≤ q2 ≤ 2

3
.

This relation was obtained in the paper by
V.A. Belinsky and I.M. Khalatnikov, 1973.



The Lifshitz-Khalatnikov parameter

If q2 = 0 then

p1 = − u

1 + u + u2
,

p2 =
1 + u

1 + u + u2
,

p3 =
u(1 + u)

1 + u + u2
,

where u ≥ 1.



In the vicinity of the Big Crunch singularity,

t → tBC

a(t) ∼ (tBC − t)(
2
3
−p1),

b(t) ∼ (tBC − t)(
2
3
−p2),

c(t) ∼ (tBC − t)(
2
3
−p3).

The axes, corresponding to the Kasner exponents p1 and p3

exchange their roles.

a(t) ∼ (tBC − t)p′3 ,

b(t) ∼ (tBC − t)p′2 ,

c(t) ∼ (tBC − t)p′1 ,

p′1 ≤ p′2 ≤ p′3.



The transformation of the Lifshitz-Khalatnikov

parameter

p′1 = − u′

1 + u′ + u′2
, p′2 =

1 + u′

1 + u′ + u′2
,

p′3 =
u′(1 + u′)

1 + u′ + u′2
.

u′ =
u + 2

u − 1
.



For comparison

In the oscillatory approach to the singularity the change of a
Kasner epoch, i.e. the change of roles of scale functions,
corresponding to the Kasner exponents p1 and p2 is combined
with the shift

u′ = u − 1.

The change of a Kasner era, when the axes, corresponding to
the exponents p2 and p3 exchange their roles is combined with
the transformation of the parameter u is transformed into

u′ =
1

u
.



The properties of the solution

The function a(t) begin its evolution contracting and finish it
also in the contraction phase. Thus, it can have or two
extrema (minimum and maximum values) or none.

The function c(t) increases both at the beginning and at the
end of the cosmological evolution, and, hence also it has two
or none of the extrema.

The function b(t) increases in the vicinity of the initial
singularity and decreases in the vicinity of the final singularity.
It has one maximum value.



The estremum condition

sin
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3
√
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√
4ΛS0√

M2 + 4ΛS0

)
= (1− 3pi)

√
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i = 1, 2, 3.

For the function b(t):
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3
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For the function a(t) the extremum solutions exist if

(1− 3p1)

√
4ΛS0√

M2 + 4ΛS0

≤ 1.

If
M2 ≥ 12ΛS0.

these solutions always exist.
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Similarly for c(t):
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Conclusion

The generalized Heckmann-Schucking solution in

the presence of a negative cosmological term can be

interpreted as a very simplified model of a

Bianchi-IX universe, having chaotic oscillatory

regimes at the beginning and at the end of its

evolution. It would be very interesting to find the

relations connecting characteristics of these two

regimes for a Bianchi-IX universe.



Afterword: singularities and observations

Tachyons and the Big Brake singularity

Based on
Z. Keresztes, L.A. Gergely, V. Gorini, U. Moschella and A.Yu.
Kamenshchik,
Tachyon cosmology, supernovae data and the Big Brake
singularity,
Phys. Rev. D79 (2009) 083504



Tachyons and the Big Brake singularity

L = −V (T )
√

1− Ṫ 2,

ε =
V (T )√
1− Ṫ 2

p = −V (T )
√

1− Ṫ 2.

V (T ) =
Λ

sin2
(

3
2

√
Λ(1 + k)T

)

×
√

1− (1 + k) cos2
(

3

2

√
Λ(1 + k)T

)
.
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Big Brake cosmological singularity

ds2 = dt2 − a2(t)dl2

t → tBB < ∞
a(t → tBB) → aBB < ∞

ȧ(t → tBB) → 0

ä(t → tBB) → −∞
R(t → tBB) → +∞

T (t → tBB) → TBB , |TBB | <
|s(t → tBB)| → ∞



Is the Big Brake evolution in our model compatible

with supernovae type Ia data ?

1. We select the compatible initial conditions by
studying the backward evolution in comparison
with the luminosity - redshift diagrams for the
supernovae type Ia standard(izable) candles.

2. Choosing initial conditions which are compatible
at the 1σ level with the data, we study the
forward evolution and show that a deceleration
period following the present accelerated
expansion is possible, and when it is so, we
estimate how long it is expected to last.
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Future evolutions
de Sitter–wdS = 1, ydS = 0, zdS = −1

Big Brake–wBB = 0,−1 < yBB < 0,−1 < zBB < 0
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When the Big Brake will come ?

y0 w0 z∗ t∗ (109yrs) zBB tBB (109yrs)
−0.70 0.770 −0.100 1.5 −0.145 2.3
−0.65 0.815 −0.168 2.6 −0.209 3.4
−0.60 0.830 −0.240 3.9 −0.277 4.7
−0.60 0.875 −0.261 4.2 −0.296 4.0
−0.55 0.875 −0.347 5.9 −0.377 6.7
−0.50 0.860 −0.427 7.8 −0.453 8.6
−0.45 0.860 −0.533 10 −0.554 11
−0.45 0.905 −0.616 13 −0.633 14
−0.40 0.890 −0.733 18 −0.745 19
−0.35 0.860 −0.814 23 −0.822 24
−0.35 0.875 −0.865 28 −0.872 29
−0.35 0.890 −0.927 36 −0.930 37
−0.30 0.845 −0.955 43 −0.957 44


