BPS/CFT correspondence

\mathcal{N} ikita $\mathcal{N e k r a s o v}$

I.M.Khalatnikov fest-100 • Chernogolovka • Oct 2019

Simons Center for Geometry and Physics, CAS Skoltech, IITP RAS

My collaborators on the theme, 1993-2019
M. Aganagic, A. Alexandrov, L. Baulieu, H. Braden, V. Fock, A. Gorsky, D. Gross, I. Klebanov, I. Krichever
A. Litvinov, A. Losev, S. Lukyanov,
A. Marshakov, A. Mikhailov, G. Moore,
A. Okounkov, N. Piazzalunga, V. Pestun,
A. Rosly, V. Roubtsov, K. Selivanov, A. Schwarz,
S. Sethi, C. Vafa, E. Witten, A. Zamolodchikov

My collaborators on the theme, 2003-2019

Including my students

S. Schadchin, X. Zhang, N. Prabhakar, S. Jeong, N. Lee

The BPS/CFT correspondence

 is a principle, circa 2002-2004
Correlators of chiral observables

in four dimensional supersymmetric theories are holomorphic blocks (form-factors) of some conformal field theory
(or a massive integrable deformation thereof) in two dimensions

A little bit of history

In 1994 C.Vafa and E.Witten studied twisted $\mathcal{N}=4$ super-Yang-Mills theory on various four-manifolds X, to check the conjectured Olive-Montonen S-duality symmetry

$$
\tau \longrightarrow-\frac{1}{\tau}
$$

acting on the complexified gauge coupling of the theory:

$$
\tau=\frac{\vartheta}{2 \pi}+\frac{4 \pi \mathrm{i}}{e^{2}}
$$

Modularity

The partition function in simple cases reduces to the generating function of the Euler characteristics of instanton moduli spaces:

$$
\begin{gathered}
Z_{X}(\mathfrak{q})=\mathfrak{q}^{-h_{G} \frac{\chi(X)}{24}} \sum_{k=0}^{\infty} \mathfrak{q}^{k} \chi\left(\mathcal{M}_{G, k}\right) \\
\mathfrak{q}=\exp 2 \pi \mathrm{i} \tau
\end{gathered}
$$

It indeed undergoes simple transformations under

$$
\tau \longrightarrow-\frac{1}{\tau}
$$

More refined versions of partition function incorporate 't Hooft fluxes, distinguish between different gauge groups G with the same Lie algebra \mathfrak{g} and so on. It turns out that the S-duality maps the gauge group to its Langlands (or Goddard-Nuyts-Olive) dual

$$
G \quad \longrightarrow \quad{ }^{L} G
$$

and moreover it should be embedded into a larger group, contained in

$$
S L_{2}(\mathbb{Z}), \quad \tau \longrightarrow \frac{a \tau+b}{c \tau+d}
$$

Nakajima algebras

Another element is the discovery of H. Nakajima,
who in 1992-1994 showed that the ground states

$$
\bigoplus_{n=0}^{\infty} H^{*}\left(\mathcal{M}_{k, n}\right)
$$

of susy quantum mechanics on the moduli spaces of $U(k)$ instantons on the gravitational instantons, the so-called ALE spaces $\approx \mathbb{R}^{4} / \Gamma, \quad \Gamma \subset S U(2)$

Nakajima algebras

H. Nakajima showed that the ground states of SQM on the moduli spaces

$$
\bigoplus_{n=0}^{\infty} H^{*}\left(\mathcal{M}_{k, n}\right)
$$

of $U(k)$ instantons on ALE spaces $\approx \mathbb{R}^{4} / \Gamma$
is an irreducible level k representation of the affine Kac-Moody algebra $\widehat{\mathfrak{g}}$, where $\mathfrak{g} г$ is McKay dual to Γ.

McKay duality

$$
\begin{aligned}
& \text { For } \Gamma=\mathbb{Z}_{N}, \\
& \text { the binary symmetry group of }
\end{aligned}
$$

the dual is $G_{\Gamma}=S U(N)$,

McKay duality

For $\Gamma=\mathbb{Z}_{N} \star \mathbb{Z}_{2}$, the binary symmetry group of

$$
G_{\Gamma}=S O(2 N),
$$

McKay duality

For the binary groups of Platonic polyhedra:

The dual groups are: $G_{\Gamma}=E_{6}, E_{7}, E_{8}$, respectively.

These were the hints that the algebraic structure of two dimensional conformal field theories such as $W Z W_{k}$ models with G_{Γ} groups
is somehow realized in the four dimensional quantum gauge theory with some amount of supersymmetry

Novel kind of symmetry in QFT

Novel kind of symmetry in QFT

Possibly non-local

Novel kind of symmetry in QFT

Possibly mapping one quantum field theory to another

An important tool allowing to study these questions
in the context of $d=4 \mathcal{N}=2$ theories

Z-functions

Z-function:

a refined version of Witten index

Formal definition:

Ω-deformation

In the Lagrangian of the $\mathcal{N}=2$ theory

replace vector multiplet complex adjoint scalars σ :

$$
\sigma+V^{m} D_{m}
$$

$$
V^{m} \partial_{m}=\epsilon_{1}\left(x^{2} \partial_{1}-x^{1} \partial_{2}\right)+\epsilon_{2}\left(x^{3} \partial_{4}-x^{4} \partial_{3}\right)
$$

Also, shift the generator \mathcal{R}_{3} of the $S U(2)$ R-symmetry group:

$$
\mathcal{R}_{3} \longrightarrow \mathcal{R}_{3}+\mathcal{J}_{3}^{R}
$$

where \mathcal{J}_{3}^{R} is the generator of the $S U(2)_{R}$ factor of the Lorentz group

Informal definition:

View the four dimensional theory
as a limit of the five dimensional theory compactified on a circle:

$$
\begin{gathered}
Z_{5 d}^{\beta}\left(\mathfrak{a}, \epsilon_{1}, \epsilon_{2} ; m, \tau\right)= \\
=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} \mathfrak{q}^{L_{0}} e^{\frac{1}{2} \beta\left(\left(\epsilon_{1}-\epsilon_{2}\right) \mathcal{J}_{3}^{L}+\left(\epsilon_{1}+\epsilon_{2}\right)\left(\mathcal{J}_{3}^{R}+\mathcal{R}_{3}\right)\right)} e^{\beta \mathfrak{a} \cdot \mathcal{G}_{\infty}} e^{\beta m \cdot \mathcal{R}^{F}}
\end{gathered}
$$

Here the charge L_{0} is the topological instanton charge:

$$
L_{0}=-\frac{1}{8 \pi^{2}} \int_{\mathbb{R}^{4}} \operatorname{tr} F \wedge F
$$

(as in Nakajima's algebras) and $\mathcal{G}_{\infty}, \mathcal{R}^{F}$ denote the global gauge transformations and the flavor charges, respectively

Informal definition:

Four dimensional interpretation

$$
Z_{4 d}\left(\mathfrak{a}, \epsilon_{1}, \epsilon_{2} ; m, \tau\right)=\lim _{\beta \rightarrow 0} Z_{5 d}^{\beta}\left(\mathfrak{a}, \epsilon_{1}, \epsilon_{2} ; m, \tau\right)
$$

Here

$$
\mathfrak{a}=\langle\sigma\rangle \in \operatorname{Cartan}(G) \otimes \mathbb{C} \text { are the vev's }
$$ of the vectormultiplet complex scalars m are the masses of matter hypermultiplets

τ are the gauge coupling(s)

The structure of Z

$$
\begin{gathered}
Z=Z^{\text {tree }} Z^{1-\text { loop }} Z^{\text {inst }} \\
Z^{\text {tree }}=\mathfrak{q}^{\frac{a^{2}}{2 \varepsilon_{1} \epsilon_{2}}}
\end{gathered}
$$

$$
Z^{1-\text { loop }}=\frac{\prod_{\alpha \in \text { roots of } G} \exp \gamma(\langle\alpha, \mathfrak{a}\rangle)}{\prod_{w \in \text { weights of matter reps }} \exp \gamma\left(m_{f}+w \cdot \mathfrak{a}\right)}
$$

Barnes double Gamma-function

$$
\gamma(x)=\left.\frac{d}{d s}\right|_{s=0} \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{d t}{t} t^{s} \frac{e^{-t x}}{\left(1-e^{t \epsilon_{1}}\right)\left(1-e^{t \epsilon_{2}}\right)}
$$

Additional hint for the BPS/CFT correspondence:
a related function shows up in Liouville conformal field theory

Faddeev's quantum dilogarithm

$$
\begin{gathered}
e_{b}(x) \sim \prod_{i, j}\left(x-b i-b^{-1} j\right) \\
b^{2}=\epsilon_{2} / \epsilon_{1}
\end{gathered}
$$

Partition function Z

$$
Z^{i n s t}\left(\mathfrak{a}, m, \tau, \epsilon_{1}, \epsilon_{2}\right)
$$

for the gauge groups G
which are the products of unitary groups, such as the Standard Model

$$
G=U\left(N_{1}\right) \times \ldots \times U\left(N_{k}\right)
$$

can be evaluated explicitly, as an infinite sum over special instanton configurations.

This is sometimes called the computation by localization.

Partition function Z

$$
Z^{i n s t}\left(\mathfrak{a}, m, \tau, \epsilon_{1}, \epsilon_{2}\right)
$$

for the gauge groups G
which are the products of unitary groups, such as the Standard Model

$$
G=U\left(N_{1}\right) \times \ldots \times U\left(N_{k}\right)
$$

can be evaluated explicitly, as an infinite sum over special instanton configurations.

For each $U(v)$ factor one sums over the v-tuples of Young diagrams:

Partition function Z: from sums over partitions to CFT

The key feature of the non-perturbative Z-factor is the combinatorics of special instanton configurations which reproduces the structure of the Hilbert space of states
several species of free chiral fermions in two dimensions

From sums over partitions to CFT

The key feature of the non-perturbative Z-factor is the combinatorics of special instanton configurations which reproduces the structure of the Hilbert space of states
in the theory of several species of free chiral fermions in two dimensions

$$
\int \sum_{i=1}^{N} \tilde{\psi}_{i} \bar{\partial} \psi^{i}
$$

Special Ω-background: additional $\operatorname{SU}(2)$ symmetry

$$
\epsilon_{1}+\epsilon_{2}=0
$$

Ω-background with $S U(2) \Longrightarrow$ fermions

$$
\epsilon_{1}+\epsilon_{2}=0
$$

In this case $Z^{\text {inst }}$ can be identified with the matrix element, or a trace, of some natural vertex operators in the theory of ψ 's

Identification of special instanton configurations

with the free fermion states

$$
\begin{aligned}
& \text { Partition } \quad \lambda=\left(\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{l}\right) \\
& \text { which is the same thing as the Young diagram } \\
& \text { with the first row with } \lambda_{1} \text { boxes } \\
& \text { the second row with } \lambda_{2} \text { boxes etc } \\
& \text { is identified with the state }
\end{aligned}
$$

$$
\begin{gathered}
|\lambda\rangle=\psi_{-\lambda_{1}+\frac{1}{2}} \psi_{-\lambda_{2}+\frac{3}{2}} \ldots \psi_{-\lambda_{i}+i-\frac{1}{2}} \ldots= \\
\prod_{i=1}^{\infty} \psi_{-\lambda_{i}+i-\frac{1}{2}} \tilde{\psi}_{-i+\frac{1}{2}} \quad|\mathrm{vac}\rangle \\
\text { in the free fermion Hilbert space }
\end{gathered}
$$

Bosonizations

From v free fermions to v chiral bosons

$$
\psi^{i}=: e^{\mathrm{i} \varphi_{i}}:, \quad \tilde{\psi}_{i}=: e^{-\mathrm{i} \varphi_{i}}:
$$

From N free fermions to one free fermion to one boson

$$
\begin{gathered}
\Psi_{N r+i-\frac{N+1}{2}}=\psi_{r}^{i}, \quad \tilde{\Psi}_{N r-i+\frac{N+1}{2}}=\tilde{\psi}_{i, r} \\
\Psi=: e^{\mathrm{i} \Phi}:, \quad \tilde{\Psi}=: e^{-\mathrm{i} \Phi}:
\end{gathered}
$$

General story leads to more general CFTs

in two dimensions, such as Liouville and Toda theories
and their q-deformations

Three classes of $\mathcal{N}=2$ theories

which are conformal in the ultraviolet

1) Theories which have Lagrangians.
2) Theories whose low-energy behavior is described by an auxiliary two-dimensional gauge theory (Hitchin's system)
3) Theories, for which Z can be computed using (topological) string theory.

Three ways of engineering $\mathcal{N}=2$ theories

- Quiver theories with Lagrangian description

The theories of class S are defined using M-theory fivebranes

The theories of class CY are defined using string compactifications on Calabi-Yau manifolds in the infinite CY volume limit, where supergravity decouples

The quiver has to be either an affine Dynkin diagram there are no fundamentals and the ranks of the gauge factors are fixed up to a single integer factor

$$
v_{i}=N a_{i}
$$

with a_{i} being Dynkin labels

ADE quiver theories: Pf quivers

Or the quiver is a Dynkin diagram of a finite dimensional Lie group G_{Γ} In this case v_{i} 's have more freedom

Asymptotically conformal quiver theories:
 « Fín $\mathfrak{A D E}$ quiver »
 E_{6} example

These theories are solved in terms of the auxiliary four or three dimensional
gauge theory
with the gauge group G_{Γ}
e.g. E_{6} in the last example

The phase space of the integrable system describing the special geometry of the moduli space of vacua
of the theory corresponding to Aff Dynkin diagrams
is the moduli space of charge N instantons with the gauge group G_{Γ}

$$
\text { on } \mathbf{R}^{\mathbf{2}} \times \mathbf{T}^{2}
$$

where the geometry of \mathbf{T}^{2} and asymptotics of the gauge fields encode the gauge couplings and the masses

For Fin quivers
one gets G_{Γ}-monopoles
on $\mathbf{R}^{2} \times \mathbf{S}^{1}$
with Dirac singularities

$$
\begin{gathered}
\text { For } G_{\Gamma}=S U(k) \\
\text { one can employ Nahm's duality } \\
\text { leading to the moduli space of } \\
\text { solutions of } S U(N) \text { Hitchin's equations } \\
\text { on } \mathbf{T}^{2} \text { or } \mathbf{R}^{1} \times \mathbf{S}^{1} \text { with } k \text { singularities }
\end{gathered}
$$

$$
\text { For } G_{\Gamma}=S U(k)
$$

one can employ Nahm's duality leading to the moduli space of solutions of $S U(N)$ Hitchin's equations on \mathbf{T}^{2} or $\mathbf{R}^{1} \times \mathbf{S}^{1}$ with k singularities

$$
\begin{gathered}
F_{z \bar{z}}+[\Phi, \bar{\Phi}]=\sum_{i=1}^{k} J_{i}^{\mathbb{R}} \delta^{(2)}\left(z-z_{i}\right) \\
\mathcal{D}_{\bar{z}} \Phi=\sum_{i=1}^{k} J_{i}^{\mathbb{C}} \delta^{(2)}\left(z-z_{i}\right)
\end{gathered}
$$

This picture eventually leads to the two-dimensional conformal theory with the Kac-Moody $\widehat{S U(N)}$ symmetry
or the corresponding W_{N}-algebra of the Liouville or A_{N-1} Toda theories

$$
L=\int \sum_{i=1}^{N} \partial \phi_{i} \bar{\partial} \phi_{i}+\sum_{i=1}^{N-1} e^{\phi_{i}-\phi_{i+1}}
$$

as in the AGT conjecture

The singularities become the vertex operator insertions

Attempt at the theory of BPS/CFT correspondence:

NONPERTURBATIVE DYSON-SCHWINGER EQUATIONS

DYSON-SCHWINGER EQUATIONS

INVARIANCE OF (PATH) INTEGRAL

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle=\frac{1}{Z} \int_{\Gamma} D \Phi e^{-\frac{1}{\hbar} S[\Phi]} \mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)
$$

UNDER "SMALL" DEFORMATIONS OF THE INTEGRATION CONTOUR

$$
\Phi \longrightarrow \Phi+\delta \Phi
$$

DYSON-SCHWINGER EQUATIONS

QUANTUM EQUATIONS OF MOTION

$$
\begin{aligned}
& \left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right) \delta S[\Phi]\right\rangle= \\
& \quad \hbar \sum_{i=1}^{n}\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{i-1}\left(x_{i-1}\right) \delta \mathcal{O}_{i}\left(x_{i}\right) \mathcal{O}_{i+1}\left(x_{i+1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle
\end{aligned}
$$

DYSON-SCHWINGER EQUATIONS

WITH SOME LUCK

$$
=
$$

GOOD CHOICE OF (POSSIBLY NON-LOCAL) OBSERVABLES

$$
\mathcal{O}_{i}(x)
$$

AND IN SOME LIMIT (CLASSICAL, PLANAR, ...)
THE DS EQUATIONS FORM A CLOSED SYSTEM

FOR EXAMPLE

$$
\hbar \longrightarrow 0
$$

CLASSICAL LIMIT

$$
\begin{gathered}
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right) \delta S[\Phi]\right\rangle=\hbar(\ldots) \rightarrow 0 \\
\Leftrightarrow \delta S[\Phi]=0
\end{gathered}
$$

GAUGE THEORY

$$
\begin{gathered}
\Phi \longrightarrow A=A_{\mu} d x^{\mu} \in \operatorname{Lie} U(N) \\
\frac{1}{\hbar} S[\Phi] \longrightarrow S_{Y M}[A]=-\frac{1}{4 g^{2}} \int_{\mathbf{R}^{4}} \operatorname{tr} F_{A} \wedge \star F_{A} \\
\mathcal{O}_{i}\left(x_{i}\right) \longrightarrow W_{R}(\gamma)=\operatorname{tr}_{R} P \exp \oint_{\gamma} A \\
\mathcal{W}(\gamma)=\frac{1}{N}\left\langle W_{\square}(\gamma)\right\rangle
\end{gathered}
$$

GAUGE THEORY: PLANAR LIMIT

$$
\begin{gathered}
N \longrightarrow \infty, \quad g^{2} \rightarrow 0 \\
\text { FINITE } \quad \lambda=g^{2} N \\
\Delta_{\gamma} \mathcal{W}(\gamma)=\frac{g^{2}}{N}\left\langle W_{\square}(\gamma) \delta S_{Y M}[A]\right\rangle= \\
=\lambda \delta_{\gamma=\gamma_{1} * \gamma_{2}} \mathcal{W}\left(\gamma_{1}\right) \mathcal{W}\left(\gamma_{2}\right)+\frac{1}{N^{2}} \text { correctons } \\
\text { MAKEENKO-MIGDAL LOOP EQUATIONS }
\end{gathered}
$$

GAUGE THEORY: MATRIX MODEL

$$
\begin{gathered}
\Phi \in \operatorname{Lie} U(N) \\
\frac{1}{\hbar} S[\Phi]=\frac{1}{\hbar} \operatorname{tr} V(\Phi) \\
V(X)=v_{p} X^{p}+v_{p-1} X^{p-1}+\ldots+v_{1} X+v_{0} \\
\mathcal{O}(x)=\frac{1}{N} \operatorname{tr}_{\square}\left(\frac{1}{x-\Phi}\right)
\end{gathered}
$$

MATRIX MODEL

PLANAR LIMIT: $\lambda=\hbar N$ FIXED

$$
\hbar \rightarrow 0, N \rightarrow \infty
$$

DS EQUATIONS \Longrightarrow LOOP EQUATIONS

$$
\begin{gathered}
y(x)^{2}=V^{\prime}(x)^{2}+g_{p-2}(x) \\
y(x)=\langle\mathcal{O}(x)\rangle+V^{\prime}(x) \\
g_{p-2}(x)=\text { DEGREE } p-2 \text { POLYNOMIAL IN } x
\end{gathered}
$$

QFT PATH INTEGRAL INVOLVES SUMMATION

 OVER TOPOLOGICAL SECTORSFOR EXAMPLE, IN GAUGE THEORY

$$
\begin{aligned}
& Z=\sum_{n \in \mathbb{Z}} e^{i m \vartheta} \int_{\mathcal{A}_{n}}\left[\frac{D A}{\operatorname{Vol}\left(\mathcal{G}_{n}\right)}\right] e^{-S_{Y M}[A]} \\
& -\frac{1}{8 \pi^{2}} \int \operatorname{tr} F_{A} \wedge F_{A}=n, \quad A \in \mathcal{A}_{n}
\end{aligned}
$$

NON-PERTURBATIVE DS EQUATIONS

IDENTITIES DERIVED BY

LARGE "DEFORMATIONS" OF THE PATH INTEGRAL CONTOUR

$$
A \in \mathcal{A}_{n} \longrightarrow A+\delta A \in \mathcal{A}_{n+1}
$$

GRAFTING A POINT-LIKE INSTANTON

COMPATIBILITY OF PERTURBATIVE

 expansion in \hbar, g^{2}, \ldots
AND NON-PERTURBATIVE CONTRIBUTIONS

expansion in $e^{-\frac{1}{\hbar}}, e^{-\frac{1}{g^{2}}}, \ldots$

Resurgence, trans-series, ... A.Voros, J.Zinn-Justin, ...
Exact β-functions in SYM, Novikov-Shifman-Vainshtein, Zakharov

\diamond

TESTING GROUNDS

$\mathcal{N}=2$ theories in $4 d$

OBSERVABLES FOR DS EQUATIONS

OBSERVABLE $Y(x)$

IN FOUR DIMENSIONAL $U(N)$ GAUGE THEORY

$$
\mathbf{Y}(\mathbf{x}) \sim \operatorname{det}_{\mathbb{C}^{N}}(x-\sigma) \sim \prod_{\alpha=1}^{N}\left(x-a_{\alpha}\right)
$$

NAIVELY

OBSERVABLES FOR DS EQUATIONS

$\mathbf{Y}(\mathbf{x})$ IN FOUR DIMENSIONS

MORE PRECISELY

$$
\mathbf{Y}(\mathrm{x})=x^{N} \exp -\sum_{k=1}^{\infty} \frac{1}{k x^{k}} \operatorname{Tr} \sigma^{k}
$$

$$
\mathbf{Y}(\mathbf{x})=x^{N} \exp -\sum_{k=1}^{\infty} \frac{1}{k x^{k}} \operatorname{Tr} \sigma^{k}
$$

Non-perturbatively, e.g. in instanton background becomes

RATIONAL FUNCTION OF DEGREE N

UNLIKE THE NAIVE $\operatorname{det}_{\mathbb{C}^{N}}(x-\sigma)$ IT HAS POLES

FOR QUIVER GAUGE THEORY

$$
G=U\left(N_{1}\right) \times \ldots \times U\left(N_{r}\right)
$$

$$
\mathbf{Y}(\mathbf{x}) \longrightarrow\left(\mathbf{Y}_{1}(x), \mathbf{Y}_{2}(x), \ldots, \mathbf{Y}_{r}(x)\right)
$$

Several rational functions of x

MAIN CLAIM

MAIN CLAIM

THERE EXIST

LAURENT POLYNOMIALS (SERIES FOR AFFINE γ)

$$
X_{i}(x)=Y_{i}(x)+\ldots
$$

in $Y_{j}\left(x+\right.$ linear combinations of masses $\left.m_{e}\right)$ such that

$$
\left\langle X_{i}(x)\right\rangle=\text { POLYNOMIAL IN } x
$$

MAIN CLAIM

$$
X_{i}(x)=Y_{i}(x)+\ldots
$$

COEFFICIENTS $=$ PRODUCTS OF

$$
\begin{gathered}
\mathfrak{q}_{j}, P_{j}\left(x+\text { linear combinations of } m_{e}\right), \quad j \in \text { Vert }_{\gamma} \\
P_{j}(x)=\operatorname{det}_{M_{j}}\left(x-\mathfrak{M}_{j}\right)
\end{gathered}
$$

ENCODE FUNDAMENTAL MASSES

WE CALL $X_{i}(x)$

THE FUNDAMENTAL GAUGE CHARACTERS

MORE GENERAL LOCAL OBSERVABLES $X_{w}(x)$

THE GAUGE CHARACTERS

$$
X_{w}(x)=X_{w_{1}}\left(x-\nu_{1}\right) X_{w_{2}}\left(x-\nu_{2}\right) \ldots X_{w_{p}}\left(x-\nu_{p}\right)+\quad \text { corrections }
$$

THE MAIN CLAIM = SEIBERG-WITTEN GEOMETRY of low-energy effective theory

NN, V.Pestun, 2012

(DOUBLE) QUANTUM SEIBERG-WITTEN GEOMETRY

 when theory is subject to Ω-deformation$$
x_{\mathbf{w}}(x) \longrightarrow \chi_{\mathbf{w}}(x) \text { - qq-characters }
$$

HIDDEN SYMMETRY OF THE SPACE OF VACUA

 quantum group based on the quiver
THE ORIGIN OF qq-CHARACTERS

$$
X_{w}(x)=\text { PARTITION FUNCTION }
$$

OF A POINT-LIKE DEFECT $\mathscr{D}_{w}(x)$

$\mathscr{D}_{\mathbf{w}}(x)$ CAN BE ENGINEERED

USING INTERSECTING BRANES

Brane-world scenarios

propose that the Standard Model is confined to a brane
while gravity propagates in the bulk

Brane-world scenarios

propose that the Standard Model is confined to a brane
which could originate from the string theory D-branes
with closed strings propagating in the bulk

Brane-world scenarios

propose that the Standard Model is confined to a brane
which could originate from the string theory D-branes
spanning a nearly flat, or a nearly AdS space

What if there is more then one stack of branes?

Branes that intersect?

The intersections could be either

the defects in the worldvolume or
our braneworld could be an intersection

Local model: $\mathbb{R}^{4} \vee \mathbb{R}^{4} \subset \mathbb{R}^{8}$

Integrate out one of the stacks

To produce observables on the remaining stack of branes
qq-character in the $U(N)$ theory on 2345
$=\chi\left(x ; \nu_{l}\right){ }^{*} \chi\left(x ; \nu_{2}\right)^{*} \chi\left(x ; \nu_{3}\right) \ldots * \chi\left(x ; \nu_{N}\right)$

Integrate out one of the stacks

To produce observables on the remaining stack of branes

qq-character in the $U\left(N^{\prime}\right)$ theory on 6789
$=\chi\left(x ; a_{l}\right){ }^{*} \chi\left(x ; a_{2}\right)^{*} \chi\left(x ; a_{3}\right) \ldots{ }^{*} \chi\left(x ; a_{N}\right)$

Surface operators from intersecting braneworlds

EXAMPLE: $U(N)$ THEORIES

$$
A_{1} \text { CASE: } N_{c}=N, N_{f}=2 N
$$

FUNDAMENTAL $q q$-CHARACTER

$$
X_{1}(x)=Y\left(x+\epsilon_{1}+\epsilon_{2}\right)+\mathfrak{q} P(x) Y(x)^{-1}
$$

For the theories with one ϵ-parameter one finds the classical G_{Γ} symmetry deformed into the Yangian symmetry $Y\left(\mathfrak{g}_{\mathrm{r}}\right)$ the symmetry of the quantum spin chains

It appears that the full Yangian symmetry
is generated by the domain walls

The challenge is to extend these of observations
to the practical scheme, extending beyond the BPS-sector

The real challenge is to extend these observations

to the practical scheme, extending beyond the BPS-sector
beyond the realm of supersymmetric theories

The real challenge is to extend this sequence of observations
to the full QFT spectrum

THANK YOU

THANK YOU,

and HAPPY 100th ANNIVERSARY

ISAAK MARKOVICH

