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The BPS/CFT correspondence

is a principle, circa 2002-2004

Correlators of chiral observables
in four dimensional supersymmetric theories
are holomorphic blocks (form-factors)

of some conformal field theory
(or a massive integrable deformation thereof)

in two dimensions



A little bit of history

In 1994 C.Vafa and E.Witten studied twisted N = 4
super-Yang-Mills theory on various four-manifolds X , to check the
conjectured Olive-Montonen S-duality symmetry

τ −→ −1

τ

acting on the complexified gauge coupling of the theory:

τ =
ϑ

2π
+

4πi

e2



Modularity

The partition function in simple cases reduces to the generating
function of the Euler characteristics of instanton moduli spaces:

ZX (q) = q−hG
χ(X )

24

∞∑
k=0

qk χ(MG ,k)

q = exp 2πiτ

It indeed undergoes simple transformations under

τ −→ −1

τ



More refined versions of partition function incorporate ’t Hooft
fluxes, distinguish between different gauge groups G with the same
Lie algebra g and so on. It turns out that the S-duality maps the
gauge group to its Langlands (or Goddard-Nuyts-Olive) dual

G −→ LG

and moreover it should be embedded into a larger group,
contained in

SL2(Z), τ −→ aτ + b

cτ + d



Nakajima algebras

Another element is the discovery of H. Nakajima,

who in 1992-1994 showed that the ground states

∞⊕
n=0

H∗(Mk,n)

of susy quantum mechanics on the moduli spaces
of U(k) instantons

on the gravitational instantons,
the so-called ALE spaces ≈ R4/Γ, Γ ⊂ SU(2)



Nakajima algebras

H. Nakajima showed that the ground states of SQM on the moduli spaces

∞⊕
n=0

H∗(Mk,n)

of U(k) instantons on ALE spaces ≈ R4/Γ

is an irreducible level k representation
of the affine Kac-Moody algebra ĝΓ,

where gΓ is McKay dual to Γ.



McKay duality

For Γ = ZN ,
the binary symmetry group of

the dual is GΓ = SU(N),



McKay duality

For Γ = ZN ? Z2, the binary symmetry group of

,
GΓ = SO(2N),



McKay duality

For the binary groups of Platonic polyhedra:

,
The dual groups are: GΓ = E6, E7, E8, respectively.



These were the hints that the algebraic structure
of two dimensional conformal field theories

such as WZWk models with GΓ groups
is somehow realized in the four dimensional quantum gauge theory

with some amount of supersymmetry



Novel kind of symmetry in QFT



Novel kind of symmetry in QFT

Possibly non-local



Novel kind of symmetry in QFT

Possibly mapping one quantum field theory to another



An important tool allowing to study these questions

in the context of d = 4 N = 2 theories



Z-functions



Z-function:

a refined version of Witten index



Formal definition:

Ω-deformation

In the Lagrangian of the N = 2 theory

replace vector multiplet complex adjoint scalars σ:

σ + VmDm

Vm∂m = ε1(x2∂1 − x1∂2) + ε2(x3∂4 − x4∂3)



Also, shift the generator R3 of the SU(2) R-symmetry group:

R3 −→ R3 + JR3

where JR3 is the generator of the SU(2)R factor of the Lorentz group



Informal definition:

View the four dimensional theory
as a limit of the five dimensional theory compactified on a circle:

Zβ5d(a, ε1, ε2;m, τ) =

= TrH (−1)F qL0 e
1
2
β((ε1−ε2)JL3+(ε1+ε2)(JR3 +R3))eβa·G∞eβm·R

F

Here the charge L0 is the topological instanton charge:

L0 = − 1

8π2

∫
R4

trF ∧ F

(as in Nakajima’s algebras) and G∞, RF denote the global gauge
transformations and the flavor charges, respectively



Informal definition:

Four dimensional interpretation

Z4d(a, ε1, ε2;m, τ) = limβ→0 Zβ5d(a, ε1, ε2;m, τ)

Here
a = 〈σ〉 ∈ Cartan(G )⊗ C are the vev’s
of the vectormultiplet complex scalars

m are the masses of matter hypermultiplets

τ are the gauge coupling(s)



The structure of Z

Z = Z treeZ 1−loopZ inst

Z tree = q
a2

2ε1ε2

Z 1−loop =

∏
α∈roots of G exp γ(〈α, a〉)∏

w∈weights of matter reps exp γ(mf + w · a)



Barnes double Gamma-function

γ(x) =
d

ds

∣∣∣∣∣
s=0

1

Γ(s)

∫ ∞
0

dt

t
ts

e−tx

(1− etε1)(1− etε2)

Additional hint for the BPS/CFT correspondence:

a related function shows up in Liouville conformal field theory
DOZZ-functions

Faddeev’s quantum dilogarithm

eb(x) ∼
∏
i ,j

(x − bi − b−1j)

b2 = ε2/ε1



Partition function Z

Z inst(a,m, τ, ε1, ε2)

for the gauge groups G

which are the products of unitary groups, such as the Standard Model

G = U(N1)× . . .× U(Nk)

can be evaluated explicitly,
as an infinite sum over special instanton configurations.

This is sometimes called the computation by localization.



Partition function Z

Z inst(a,m, τ, ε1, ε2)

for the gauge groups G

which are the products of unitary groups, such as the Standard Model

G = U(N1)× . . .× U(Nk)

can be evaluated explicitly,
as an infinite sum over special instanton configurations.

For each U(v) factor one sums over the v -tuples of Young diagrams:

, , , ,



Partition function Z: from sums over partitions to CFT

The key feature of the non-perturbative Z-factor
is the combinatorics of special instanton configurations

which reproduces the structure of the Hilbert space of states

several species of free chiral fermions in two dimensions



From sums over partitions to CFT

The key feature of the non-perturbative Z-factor
is the combinatorics of special instanton configurations

which reproduces the structure of the Hilbert space of states

in the theory of several species of free chiral fermions in two dimensions

∫ N∑
i=1

ψ̃i ∂̄ψ
i



Special Ω-background: additional SU(2) symmetry

ε1 + ε2 = 0



Ω-background with SU(2) =⇒ fermions

ε1 + ε2 = 0

In this case Z inst can be identified
with the matrix element, or a trace,

of some natural vertex operators
in the theory of ψ’s



Identification of special instanton configurations

with the free fermion states

Partition λ = (λ1 ≤ λ2 ≤ . . . ≤ λl)

which is the same thing as the Young diagram

with the first row with λ1 boxes
the second row with λ2 boxes etc

is identified with the state

|λ〉 = ψ−λ1+ 1
2
ψ−λ2+ 3

2
. . . ψ−λi+i− 1

2
. . . =

∞∏
i=1

ψ−λi+i− 1
2
ψ̃−i+ 1

2
|vac〉

in the free fermion Hilbert space



Bosonizations

From v free fermions to v chiral bosons

ψi =: e iϕi : , ψ̃i =: e−iϕi :

From N free fermions to one free fermion to one boson

ΨNr+i−N+1
2

= ψi
r , Ψ̃Nr−i+N+1

2
= ψ̃i ,r

Ψ =: e iΦ : , Ψ̃ =: e−iΦ :



General story leads to more general CFTs

in two dimensions, such as Liouville and Toda theories

and their q-deformations



Three classes of N = 2 theories

which are conformal in the ultraviolet

1) Theories which have Lagrangians.

2) Theories whose low-energy behavior is described by an auxiliary
two-dimensional gauge theory (Hitchin’s system)

3) Theories, for which Z can be computed using (topological)
string theory.



Three ways of engineering N = 2 theories



♦

• Quiver theories with Lagrangian description

The theories of class S are defined using M-theory fivebranes

The theories of class CY are defined using
string compactifications on Calabi-Yau manifolds

in the infinite CY volume limit,
where supergravity decouples

♦



The quiver has to be either an affine Dynkin diagram
there are no fundamentals

and the ranks of the gauge factors
are fixed up to a single integer factor

vi = Nai

with ai being Dynkin labels

♦



♦

♦



Or the quiver is a Dynkin diagram of a
finite dimensional Lie group GΓ

In this case vi ’s have more freedom





♦

These theories are solved in terms
of the auxiliary four or three dimensional

gauge theory
with the gauge group GΓ

e.g. E6 in the last example

♦



♦

The phase space of the integrable system
describing the special geometry

of the moduli space of vacua
of the theory corresponding to Aff Dynkin diagrams

is the moduli space of charge N instantons
with the gauge group GΓ

on R2 × T2

where the geometry of T2 and asymptotics of the gauge fields
encode the gauge couplings and the masses

♦



♦

For Fin quivers
one gets GΓ-monopoles

on R2 × S1

with Dirac singularities

♦



For GΓ = SU(k)
one can employ Nahm’s duality
leading to the moduli space of

solutions of SU(N) Hitchin’s equations
on T2 or R1 × S1 with k singularities



For GΓ = SU(k)
one can employ Nahm’s duality
leading to the moduli space of

solutions of SU(N) Hitchin’s equations
on T2 or R1 × S1 with k singularities

Fzz̄ + [Φ, Φ̄] =
k∑

i=1

JRi δ
(2)(z − zi )

Dz̄Φ =
k∑

i=1

JCi δ
(2)(z − zi )



♦



♦

This picture eventually leads to
the two-dimensional conformal theory

with the Kac-Moody ŜU(N) symmetry
or the corresponding WN -algebra

of the Liouville or AN−1 Toda theories

L =

∫ N∑
i=1

∂φi ∂̄φi +
N−1∑
i=1

eφi−φi+1

as in the AGT conjecture

♦



♦
The singularities become

the vertex operator insertions

♦



♦

Attempt at the theory of BPS/CFT correspondence:

NONPERTURBATIVE DYSON-SCHWINGER EQUATIONS

♦



♦

DYSON-SCHWINGER EQUATIONS

INVARIANCE OF (PATH) INTEGRAL

〈O1(x1) . . .On(xn)〉 =
1

Z

∫
Γ
DΦ e−

1
~S[Φ] O1(x1) . . .On(xn)

UNDER “SMALL” DEFORMATIONS
OF THE INTEGRATION CONTOUR

Φ −→ Φ + δΦ

♦



♦

DYSON-SCHWINGER EQUATIONS

QUANTUM EQUATIONS OF MOTION

〈O1(x1) . . .On(xn)δS [Φ]〉 =

~
n∑

i=1

〈O1(x1) . . .Oi−1(xi−1)δOi (xi )Oi+1(xi+1) . . .On(xn)〉

♦



♦

DYSON-SCHWINGER EQUATIONS

WITH SOME LUCK

=

GOOD CHOICE OF (POSSIBLY NON-LOCAL) OBSERVABLES

Oi (x)

AND IN SOME LIMIT (CLASSICAL, PLANAR, ... )

THE DS EQUATIONS FORM A CLOSED SYSTEM

♦



♦

FOR EXAMPLE

~ −→ 0

CLASSICAL LIMIT

〈O1(x1) . . .On(xn)δS [Φ]〉 = ~ (. . .)→ 0

⇔ δS [Φ] = 0

♦



♦

GAUGE THEORY

Φ −→ A = Aµdx
µ ∈ LieU(N)

1

~
S [Φ] −→ SYM [A] = − 1

4g2

∫
R4

trFA ∧ ?FA

Oi (xi ) −→WR(γ) = trR Pexp

∮
γ
A

W(γ) =
1

N
〈W�(γ)〉

♦



♦

GAUGE THEORY: PLANAR LIMIT

N −→∞, g2 → 0,

FINITE λ = g2N

∆γW(γ) =
g2

N
〈W�(γ)δSYM [A]〉 =

= λδγ=γ1?γ2W(γ1)W(γ2) +
1

N2
correctons

MAKEENKO-MIGDAL LOOP EQUATIONS

♦



♦

GAUGE THEORY: MATRIX MODEL

Φ ∈ LieU(N)

1

~
S [Φ] =

1

~
trV (Φ)

V (X ) = vpX
p + vp−1X

p−1 + . . .+ v1X + v0

O(x) =
1

N
tr�

(
1

x − Φ

)

♦



♦

MATRIX MODEL

PLANAR LIMIT: λ = ~N FIXED

~→ 0, N →∞

DS EQUATIONS =⇒ LOOP EQUATIONS

y(x)2 = V ′(x)2 + gp−2(x)

y(x) = 〈O(x)〉+ V ′(x)

gp−2(x) = DEGREE p − 2 POLYNOMIAL IN x

♦



♦

QFT PATH INTEGRAL INVOLVES SUMMATION

OVER TOPOLOGICAL SECTORS

♦



♦

FOR EXAMPLE, IN GAUGE THEORY

Z =
∑
n∈Z

e inϑ
∫
An

[
DA

Vol(Gn)

]
e−SYM [A]

− 1

8π2

∫
trFA ∧ FA = n, A ∈ An

♦



♦

NON-PERTURBATIVE DS EQUATIONS

IDENTITIES DERIVED BY

LARGE “DEFORMATIONS” OF THE PATH INTEGRAL CONTOUR

A ∈ An −→ A + δA ∈ An+1

GRAFTING A POINT-LIKE INSTANTON

♦



♦

COMPATIBILITY OF PERTURBATIVE

expansion in ~, g2, . . .

AND NON-PERTURBATIVE CONTRIBUTIONS

expansion in e−
1
~ , e

− 1
g2 , . . .

Resurgence, trans-series, . . . A.Voros, J.Zinn-Justin, . . .
Exact β-functions in SYM, Novikov-Shifman-Vainshtein, Zakharov

♦



♦

TESTING GROUNDS

N = 2 theories in 4d

♦



♦

OBSERVABLES FOR DS EQUATIONS

OBSERVABLE Y (x)

IN FOUR DIMENSIONAL U(N) GAUGE THEORY

Y(x) ∼ detCN (x − σ) ∼
N∏
α=1

(x − aα)

NAIVELY

♦



♦

OBSERVABLES FOR DS EQUATIONS

Y(x) IN FOUR DIMENSIONS

MORE PRECISELY

Y(x) = xN exp −
∞∑
k=1

1

kxk
Trσk

♦



♦

Y(x) = xN exp −
∞∑
k=1

1

kxk
Trσk

Non-perturbatively, e.g. in instanton background becomes

RATIONAL FUNCTION OF DEGREE N

UNLIKE THE NAIVE detCN(x − σ) IT HAS POLES

♦



♦

FOR QUIVER GAUGE THEORY

G = U(N1)× . . .× U(Nr )

Y(x) −→ (Y1(x) , Y2(x) , . . . , Yr (x) )

Several rational functions of x

♦



♦

MAIN CLAIM

♦



♦

MAIN CLAIM

THERE EXIST

LAURENT POLYNOMIALS (SERIES FOR AFFINE γ)

Xi(x) = Yi(x) + . . .

in Yj(x+ linear combinations of masses me) such that

〈 Xi(x) 〉 = POLYNOMIAL IN x
♦



♦

MAIN CLAIM

Xi(x) = Yi(x) + . . .

COEFFICIENTS = PRODUCTS OF

qj ,Pj(x + linear combinations of me), j ∈ Vertγ

Pj(x) = detMj
(x −Mj)

ENCODE FUNDAMENTAL MASSES

♦



♦

WE CALL Xi(x)

THE FUNDAMENTAL GAUGE CHARACTERS

♦



♦

MORE GENERAL LOCAL OBSERVABLES Xw(x)

THE GAUGE CHARACTERS

Xw(x) = Xw1(x − ν1)Xw2(x − ν2) . . .Xwp(x − νp) + corrections

♦



♦

THE MAIN CLAIM = SEIBERG-WITTEN GEOMETRY

of low-energy effective theory

NN, V.Pestun, 2012

♦



♦

(DOUBLE) QUANTUM SEIBERG-WITTEN GEOMETRY

when theory is subject to Ω-deformation

Xw(x) −→ χw(x) – qq-characters

♦



♦

HIDDEN SYMMETRY OF THE SPACE OF VACUA

quantum group based on the quiver

♦



♦

THE ORIGIN OF qq-CHARACTERS

Xw(x) = PARTITION FUNCTION

OF A POINT-LIKE DEFECT Dw(x)

Dw(x) CAN BE ENGINEERED

USING INTERSECTING BRANES

♦



Brane-world scenarios

propose that the Standard Model is confined to a brane

while gravity propagates in the bulk



Brane-world scenarios

propose that the Standard Model is confined to a brane

which could originate from the string theory D-branes

with closed strings propagating in the bulk



Brane-world scenarios

propose that the Standard Model is confined to a brane

which could originate from the string theory D-branes

spanning a nearly flat, or a nearly AdS space



What if there is more then one stack of branes?

Branes that intersect?



The intersections could be either

the defects in the worldvolume or

our braneworld could be an intersection



Local model: R4 ∨ R4 ⊂ R8



Local string model: R4 ∨ R4 × R2 ⊂ R10



Integrate out one of the stacks
To produce observables on the remaining stack of branes



Integrate out one of the stacks
To produce observables on the remaining stack of branes



Surface operators from intersecting braneworlds



♦

EXAMPLE: U(N) THEORIES

A1 CASE: Nc = N , Nf = 2N

FUNDAMENTAL qq-CHARACTER

X1(x) = Y (x + ε1 + ε2) + qP(x)Y (x)−1

♦



For the theories with one ε-parameter
one finds the classical GΓ symmetry deformed

into the Yangian symmetry Y (gΓ)
the symmetry of the quantum spin chains



It appears that the full Yangian symmetry

is generated by the domain walls



QFT1 → QFT2



The challenge is to extend these of observations

to the practical scheme, extending beyond the BPS-sector



The real challenge is to extend these observations

to the practical scheme, extending beyond the BPS-sector

beyond the realm of supersymmetric theories



The real challenge is to extend this sequence of observations

to the full QFT spectrum



THANK YOU



THANK YOU,

and HAPPY 100th ANNIVERSARY

ISAAK MARKOVICH


