
Evolution of magnetic field fluctuations in chaotic flows.

I. INTRODUCTION

The evolution equation of the field B(r, t) in the incompressible flow
v(r, t) has the form :

∂tB = (B ·∇)v − (v ·∇)B + κ∇2B. (1)

where κ is the magnetic diffusion coefficient inversely propor-
tional to the fluid conductivity. We study here the kinematic
regime when the back reaction of the magnetic field on the
flow can be neglected.
A chaotic velocity field has several spatial scales at which its

correlation properties differ significantly. The smallest one is
the local length scale R such that for the distances less than R
the velocity field is spatially smooth. Namely, in the vicinity
|r − r(t)| � R of a given Lagrangian trajectory r(t) the
velocity can be approximated by a linear profile:

vµ(r, t) ≈ V (0)
µ (t) + σµν(t)rν, V (0)

µ (t) = vµ(r(t), t), (2)

σµµ = 0

Locally the flow is generally hyperbolic:
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In the limit of infinite conductivity the magnetic field evolves
in a neighborhood of a given Lagrangian particle locally. For
a chaotic flow this evolution is a multiplicative matrix ran-
dom process leading to exponential grows of the mean square
amplitude ofB independently on global properties of the flow
and its dimensionality.
Enhancement of the field is a consequence of magnetic flux

conservation:

If the resistance of the fluid is small but finite the dissipation
governs large time behavior of the magnetic field distribution.
It does not mean that the values of B2,B4, . . . averaged over
the space cease growing. Rather, large-scale characteristics of
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the flow becomes important.
The magnetic diffusion is significant on the scales less then
rd ∼

√
κ/λ where λ ∼ |σ̂| is the characteristic Lyapunov

exponent of divergence of close Lagrangian trajectories in
the flow. We consider here the case when the ratio R/rd:
R/rd � 1. This is natural relation between the parameters
in astrophysical applications where R/rd is proportional to
square root Pr1/2m of the magnetic Prandtl number Prm as
well as in the polymer solutions where rd originates from the
molecular diffusion. We restrict ourselves to the case of small-
scale initial magnetic field fluctuations when their correlation
length l is small compared R: rd <∼ l � R. Then the mag-
netic diffusion determines the magnetic field evolution from
the very beginning, or more precisely, for times t obeying the
inequality t > td = λ−1 ln l/rd ∼ 1. It is well-known that for
three-dimensional flows the fluctuations of the field B con-
tinue to grow exponentially even in this dissipative regime
having highly intermittent spatial and temporal statistics.

II. THE ORIGIN AND DURATION OF THE ENHANCEMENT STAGE IN THE MAGNETIC FIELD
EVOLUTION: QUALITATIVE PICTURE.

It is easy to see from (1) that for the two-dimensional flow
the transverse component B3 of the magnetic field evolves in-
dependently on in-plane components Bα, α = 1, 2. In early
papers of Zeldovich it was noted correctly thatB3 behaves like
a decaying passive scalar field and goes to zero exponentially
in an arbitrary point fixed in space. Then, as it is claimed
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in the cited works, the remaining two components should de-
cay in the same manner. This conclusion is drawn from the
consideration of the exact relation

∂1B1 + ∂2B2 + ∂3B3 = 0

together with the suppositions that all the terms in this re-
lation have the same order of magnitude and the derivatives
∂1B1 and ∂2B2 have the same time dependence as the ampli-
tudes B1 and B2. But the latter assumption is incorrect.

To show this let us consider the simple explicit example of
the dissipative evolution of the initial data B(0)(r) in the
linear velocity field v1 = λr1, v2 = −λr2. In this case the
evolution equation for the spatial Fourier components of the
magnetic field

Bα(r, t) =

∫
d2k

(2π)2
eikrBα

k(t) (3)

becomes the first-order partial differential equation:

∂tB
α
k − σµνkµ

∂

∂kν
Bα

k −Bν
kσαν + κk2Bα

k = 0. (4)

where σµν(t) = diag(λ,−λ, 0). This equation can be solved
easily by the characteristic method. For the sake of defi-
niteness let us take the Gaussian profile for the initial field
distribution:

B(r, t = 0) = curlA, A = a exp

(
− r2

4l2

)
,a = (0, a, 0).

(5)
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For this vector-potential the second field component is equal
to zero: B2 = 0. The time evolution of the component
B1(r, t) involves two asymptotical stages. The first one cor-
responds to the time interval λ−1 � t � λ−1 ln(l/rd) and
can be called the diffusion-free regime:

B1 ≈
ar3e

λt

2l2
exp

{
− r

2
3

4l2
− r22e

2λt

4l2
− r21

4l2
e−2λt

}
. (6)

The initial blob is being stretched along the axis (1, 0, 0).
The transverse size of the blob decreases but the dissipative
scale rd =

√
2κ/λ is not yet reached. As a result the field

amplitude grows exponentially. The second stage correspond
to the resistive regime and it takes place at t� λ−1 ln(l/rd):

B1 ≈
ar3

lrd (1 + κt/ l2)3/2
× (7)

× exp

{
− r23

4(l2 + κt)
− r22
r2d
− r21

4l2
e−2λt

}
, (8)

B3 ≈ −r1
ae−2λt

lrd (1 + κt/ l2)1/2
× (9)

× exp

{
− r23

4(l2 + κt)
− r22
r2d
− r21

4l2
e−2λt

}
. (10)

The field amplitude B1 inside the blob stops to grow but it
does not decay exponentially. Moreover, the field energy con-
tinues to grow:

∫
d3rB2 ∝ eλt. It happens in spite of the fact

that the component B3 together with the two-dimensional
divergence ∂1B1 + ∂2B2 = ∂1B1 decay exponentially for any
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fixed r. However, the maximal value of B3 is reached in the
point r(t) = (l exp(2λt), 0, 0) moving with time and this max-
imum decays more slowly than the value of B3 at any fixed
point. This «inflation» of the in-plane divergence of the field
is the key property of the problem lost in the previous stud-
ies. Let us take now the initial condition in form of field blobs
with centers Rn randomly distributed over space:

B(r, 0) = curl

[∑
n

an exp

(
−(r −Rn)2

4l

)]
, (11)

an = (0, an, 0),n = (n1, n2, n3).

The amplitude B1(r, t) at a given time moment t �
λ−1 ln(L/rd) can be represented as a sum of exponentially
large number of addends:

B1 ∝
M∑
−M

a(0,m,0), M ∼ rde
λt/L. (12)

If a(0,m,0) are uncorrelated random numbers then we arrive
to the estimation B1 ∝ eλt/2. For random matrix σ̂(t) in
the expansion (2) the Lyapunov exponent λ is a fluctuating
quantity. The moments of the field B can be evaluated with
the same estimation |B| ∝ eλt/2 averaged over the statis-
tics of λ: 〈B2n(t)〉 ∝ 〈exp(nλt)〉. The resulting statistics of
the magnetic field is intermittent because of the inequality
〈exp(nλt)〉 � exp(n〈λ〉t) for λt� 1.
The exponential growth of the magnetic field fluctuations

continues in the resistive regime due to aggregation of the



7

initial blobs along the contracting direction (0, 1, 0) of the
flow. The magnetic diffusion homogenizes the field on the
scales ∼ rd.

One can check easily that for a pure two-dimensional mag-
netic field (e.g., for a = (0, 0, a) in the example (5) ) the
moments of B decay exponentially at t � λ−1 ln l/rd. The
velocity field providing the exponential increase |B| ∝ eλt/2

grows at spatial infinity and cannot be used for a global of
any physical flow. On the other hand, flows on compact two-
dimensional manifolds do not produce unlimited growth of
the magnetic field. To understand how the compactness of
the space affects the long time behavior of the field note that
the enhancement of 〈B2〉 in the example considered above is
the result of coalescence of the field filaments with uncorre-
lated amplitudes. But for a finite size of the system or for a
finite correlation length R of the velocity field this property
may cease to hold for large enough λt. Indeed, in the course
of evolution the magnetic lines of force form narrow strip-
like clusters with the widths ∼ rd and exponentially growing
lengths. The field B is flattening out in the stretching direc-
tion and becomes strongly correlated along such strips. The
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correlation length R of the velocity field turns out to be the
characteristic curvature radius of these strips. As a result the
magnetic field becomes correlated along random curves in the
plane. Hence, several parts of the same strip fall within the
contracting domain of the flow. The anticorrelation arising
in this way with certain probability in the field distribution
can either modify the growth of the field moments or stop it
at all. This phenomenon is illustrated schematically in Fig.1.
One can note some similarity of the phenomenon with weak
localization.

flow

growth stage
slow decay

stage

Fig.1. This figure illustrates the anticorrelation mechanism terminating the dynamo in two-dimensional flow: the hyperbolic

flow on the growth stage is stretching the magnetic field blobs into filament (thick arrows on the left part) and contracting

these filaments with arbitrary correlated field values (completely correlated thick arrows on the left part of the figure) in

transverse direction forming one filament with growing field strongly correlated along the filament. When the lengths of the

resulting filaments reach the flow scale R (the radius of curvature of the arrows in the right part of the picture) their shapes

become twisted what finally lead to anticorrelation in the spatial field distribution.
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III. THE KRAICHNAN-KAZANTSEV MODEL IN TWO DIMENSIONS.

The analytic description of the phenomenon is developed
here for the Kraichnan-Kazantsev model where the velocity
v(r, t) statistics is supposed to be Gaussian with zero mean
value and the pair correlator of the form:

〈vµ(r, t)vν(r
′, t′)〉 = δ(t− t′)Cµν(r − r′). (13)

We consider the initial magnetic field to be randomly dis-
tributed over the space. The evolution equation for the cor-
relation tensor Fαβ(r, t) = 〈Bα(r′, t)Bβ(r′ + r, t)〉 follows
directly from the equation of motion (1):

∂tFαβ = [Cµν(0)− Cµν(r)] ∂µ∂νFαβ +

+∂µCνβ(r)∂νFαµ + ∂µCνα(r)∂νFµβ − (14)
−Fµν∂µ∂νCαβ(r) + 2κ4Fαβ. (15)

The magnetic field has all three components depending on
the third coordinate r3 as well. On the other hand, the tensor
Cµν does not depend on r3 and the corresponding components
of Cµν are equal to zero: Cµ3 = C3ν = 0. In this case there is a
closed evolution equation for the in-plane tensor Fαβ, α, β =
1, 2 and just this tensor is considered below. This reduced
correlation tensor has non-zero divergency: ∂αFαβ 6= 0. The
coordinate r3 is a parameter in the two-dimensional problem
and it is not pointed out in the sequel explicitly.
The tensor function Cµν(r) depends smoothly on r and goes

to zero at r � R. This one-scale behavior can be realized in
two-dimensional turbulent flow. Nevertheless, it must be em-
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phasized that for a class of physical situations like small-scale
dynamo and passive scalar decay it is precisely the smooth-
ness domain r ≤ R which governs long time asymptotics.

We consider the statistics of the velocity field to be isotropic:

Cµν(r) = δµνC1(r) +
rµrν
r2
C2(r). (16)

The incompressibility of the flow leads to the following relation between C1(r) and C2(r):

C′1(r) = −C′2(r)− 1

r
C2(r), (17)

C1(r) = V0R− C2(r)−
r∫

0

dr′

r′
C2(r′), C2(0) = 0.

The value V0 has the sense of the typical advection velocity and is defined by the condition C1(r → ∞) = C2(r →
∞) = 0. The statistical isotropy of the magnetic field leads to the decomposition of the tensor Fαβ(r, t) similar to
(16):

Fαβ(r, t) = δαβS(r, t) +
rαrβ
r2
Y(r, t). (18)

One can check that the evolution of the function

Φ(r, t) = (1 + r∂r)Y(r, t) + r∂rS(r, t), ∂αFαβ =
rα
r2

Φ(r, t), (19)

decouples:

∂tΦ = [C1(0)− C1(r)− C2(r)]

(
∂2
rΦ− 1

r
∂rΦ

)
+ r2

d

(
∂2
rΦ− r−1∂rΦ

)
. (20)

The enhancement of the magnetic field is determined by the dynamics at the scales r � R where one can use the
expansion:

〈vµ(r, t)vν(0, t′)〉 ≈
[
V0Rδµν − λ

(
3r2δµν − 2rµrν

)]
δ(t− t′). (21)

The Lyapunov exponent λ can be expressed as λ = V0/R. If (21) works the equations for the functions Φ(r, t) and
Y (r, t) have the form:

λ−1∂tΦ = L̂ΦΦ, L̂Φ = r2∂2
r − r∂r + r2

d

(
∂2
r − r−1∂r

)
, (22)

λ−1∂tY = L̂YY − 8Φ, L̂Y = r2∂2
r + 7r∂r + 8 + r2

d

(
∂2
r + r−1∂r − 4r−2

)
. (23)

The dissipative scale rd =
√

2κ/λ is considered to be smallest in the problem. At largest distances r � R the
correlation tensor obey the diffusion equation:

∂tFαβ = D4Fαβ , D = λR2. (24)

To solve the evolution equations we use the Laplace transform:

Yp(r) = λ

∞∫
0

dt e−pλtY(r, t), (25)
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The function Φp(r) defined analogously is equal to the convolution of the initial data Φ(0)(r) = Φ(r, t = 0) with the
Green function:

Φp(r) =

∞∫
0

dr′GΦ(p|r, r′)Φ(0)(r′), GΦ(p|r, r′) =
〈
r
∣∣∣(p− L̂Φ)−1

∣∣∣ r′〉 . (26)

The Eq.(23) for the function Y(r, t) at r � R has the source −8Φ(r, t). Thus the Laplace transform Yp(r) is expressed
both in terms of the initial condition Y(0)(r) = Y(r, t = 0) and the source Φp(r):

Yp(r) ≈
R∫

0

dr′GY(p|r, r′)
(
Y(0)(r′)− Φp(r

′)
)
, GY(p|r, r′) =

〈
r
∣∣∣(p− L̂Y)−1

∣∣∣ r′〉 . (27)

We present derivation of Φ(r, t) and Y(r, t); the function S(r, t) can be restored easily.
We are interesting in the behavior of Φ(r, t) and Y(r) at rd � r � R and large times. The initial distributions Φ(0)(r)

and Y(r)
(0) are supposed to be smooth functions localized on the scale l with the same order of magnitude:Φ(0)(0) ∼

Y(0)
(0) ∼ f0. To avoid multiplication of intermediate asymptotics we consider here the case l ∼ rd. The role of the

magnetic diffusion is crucial in formation of long-time asymptotics. But looking for Φ(r, t) and Y(r) at rd � r � R
and λt � 1 we see that the this role is reduced to stabilization of their temporal behavior at r <∼ rd. Technically
this means that we can omit the diffusive part in the operators (22) and (23) cutting off the dr′-integration in (26)
and (27) by the distance rd. The Green functions GΦ,Y(p|r, r′) at rd � r � R are constructed of zero modes of the
operators p−L̂Φ,Y . Such zero modes are linear combinations of power functions with coefficients defined by matching
zero modes at larger distances r ≥ R. It is not attainable to compute these coefficients exactly but to determine
the long-time behavior of Fαβ(r, t) only rightest singularities of the coefficients in the complex p-plane are needed.
Unboundedness of this right domain together with the diffusive type of the evolution produce the singularities at the
point p = 0. The computational details can be found in the Appendix. Here we present the results for the components
of the magnetic field correlation tensor in various space and time intervals.

There are two asymptotical regimes in the evolution of the function Φ(r, t). During the first one corresponding to
2λt < lnR/rd the shape of Φ(r, t) may be described as an exponentially blowing hull:

Φ(r, t) ∝ f0√
λt

r

rd
exp

(
−λt− 1

4λt
ln2 r

rd

)
(28)

One can see that Φ(r, t) is concentrated in a narrow neighborhood of the running point rm(t) = rd exp(2λt); the value
Φm = Φ(rm(t), t) decreases slowly: Φm ∼ f0(λt)−1/2. When rm(t) reaches the velocity scale R the behavior of Φ(r, t)
changes:

Φ(r, t) ∝ f0
r2

R2

1

(λt)2
, λt� lnR/r � 1. (29)

Turning to the function Y(r, t) note first that the the initial data Y(0)(r) contribution decays monotonically as
∼ exp(−λt) at the first stage of the evolution 1 � λt � ln(R/r) and it is ignored below. It is worth emphasizing
that this is the only contribution in the case of two-dimensional magnetic field. In our case the long-time evolution of
Y(r, t) is determined by the source term in (23). The kernel in (27) grows with r′ on the real semi-axis p < 3. In its
turn the source Φp(r) grows with r and as a result of these two factors Y(r, t) increases exponentially at intermediate
times:

Y(r, t) ∝ f0
l

r
exp(3λt),

1

4
ln

r

rd
� λt ≤ 1

4
ln
R2

lr
. (30)

In the next time inerval the grows of Y(r, t) continues but it becomes R - dependent:

Y(r, t) ∝ f0√
λt

R4

r3l
exp

(
−λt− 1

4λt
ln2 R

2

rl

)
,

1

4
ln
R2

lr
≤ λt ≤ 1

2
ln
R2

lr
, (31)

The maximal value reached by Y(r, t) is parametrically large: Ymax(r) ∼ R2/r2. The behavior of Y(r, t) at λt �
ln(R/r) is governed by the singularity of Yp(r) at p = 0:

Y(r, t) ∝ f0
R2

r2

1

(λt)2
, λt� ln

R2

lr
. (32)
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The complete correlation tensor at large times and r � R is restored noting that Φ can be neglected in the relation

(19):

Fαβ(r, t) ∝ f0
(λt)2

(
−δαβ + 2

rαrβ
r2

) R2

r2
, rd � r � R,

(33)

Fαβ(r, t) ∝ f0
(λt)2

R2

r2d
δαβ, r <∼ rd.

These estimations are the main result.

IV. CONCLUSION.

We see that in two-dimensional chaotic flow the fluctuations of the magnetic field increase their amplitude in
R/rd times. The statistics of the field in the course of the exponential growth is highly intermittent similar to the
three-dimensional case: the field energy is concentrated in strip-like domains with widths of the order of rd.

Let us consider now the four-point correlation tensor. It is easy to see that there is the decomposition:

〈Bα(r1, t)Bβ(r2, t)Bγ(r3, t)Bµ(r4, t)〉 = T̂ (R12,R34) +
(34)

T̂ (R13,R24) + T̂ (R14,R23) ,

where Rjl = rj − rl, j, l = 1, . . . , 4 and for small distances
R1,2 � rd we have:[

T̂ (R1,R2)
]
αβ,µλ

∝ (δαβδµλ + δαµδβλ + δαλδβµ)

(
cf0

lrd

)2

exp (4Gt) . r � rd, (35)

If R1 ∼ R2 ∼ R � rd the correlation tensor T̂ (R1,R2)
demonstrates strong angular dependence; for finite Θ12 where
Θ12 = ϕR1−ϕR2 is the angle between R1 and R2 it is expo-
nentially small:

T̂ (R1,R2) ∼ exp

(
−R

2

r2d
Θ2

12

)
. (36)
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In the collinear limit R1,2 = nR1,2 one can get the simple
expression:

T̂ (R1,R2) ∼ nαnβnγnµ
f 20 l

2

rd
√
R2

1 + R2
2

exp (4Gt) . (37)

After t ∼ λ−1 ln(R/rd) the growth gives way to the slow
decrease.

APPENDIX A: GREEN FUNCTIONS AND INVERSE LAPLACE TRANSFORM

Here we present explicit expressions for the Green functions GΦ,Y(p|r, r′) and outline briefly the inverse Laplace
transform leading to the Eqs.(28)-(33).

For r ≥ r′, r′ � R the Green function GΦ(p|r, r′) has the form:

GΦ(p|r, r′) = ϕp(r)
(r′)
−2+

√
p+1

2
√
p+ 1

, (A1)

where ϕp(r) at r � R is a linear superposition of power functions:

ϕp(r) = r1−
√
p+1 + bpR

−2
√
p+1r1+

√
p+1, r � R, (A2)

with the coefficient bp to be determined by matching the Laplace transform of a homogeneous solution of Eq. (20) in
the the domain r ≥ R. For r � R and Rep > 0 the function ϕp(r) is a decaying solution of the equation:(

p/R2 − ∂2
r + r−1∂r

)
ϕp(r) = 0, (A3)

and has the form

ϕp(r) ≈ BpR−
√
p+1rK1

( r
R

√
p
)
, r � R. (A4)

The solution in the domain r ∼ R defines 2× 2-matrix ĝ which is the transition matrix between the asymptotics (A2)
and (A4). It fixes the coefficients Bp and bp:(

bp + 1, bp + 1 +
√
p+ 1(bp − 1)

)
ĝ = Bp (K1(

√
p),−√pK0(

√
p)) . (A5)

For regular functions C1,2(r) the elements of ĝ have no singular points in the p-plane. Thence the singularities of bp
and Bp determining large time behavior emerge from the right hand side of (A5) and are placed at p = 0. The leading
terms in expansion of bp near p = 0 are

p→ 0, bp → b0 + b1p ln p, b0,1 ∼ 1. (A6)

If r � R and p→ 0 the Laplace transform ϕp(r) is proportional to the modified Bessel function:

p→ 0, ϕp ∝
r

R
pK1

( r
R

√
p
)
. (A7)

The main contribution to the integral (26) is given by r′ ∼ rd. In inverting the Laplace transform the line of p-
integration can be deformed to upper and lower edges of the cut along the negative real semi-axes. For the times
2λt < lnR/rd the behavior of Φ(r, t) is determined by the contribution of vicinity of the point p = −1−(λt)−2(ln r/rd)

2

leading to (28).
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The Green function GY(p|r, r′) can be found in the same way; for for r′ > r and r, r′ � R it has the form:

GY(p|r, r′) = r−3+
√
p+1 (r′)

2−
√
p+1

2
√
p+ 1

[
1 + ap

(
r′

R

)2
√
p+1
]
. (A8)

The coefficient ap is defined like bp by matching to the solution in the domain r ≥ R and it has the logarithmic
branching point at p = 0:

p→ 0, ap → a0 + a1p
2 ln p, a0,1 ∼ 1. (A9)

As it was mentioned above the contribution ∼ Y(0)(r) can be ignored. The source contribution has the form:

Yp(r) = YAp (r) + YBp (r),

YAp (r) ∼ f0r
1−
√
p+1

(p+ 1)(2−
√
p+ 1)

(
R

r

)4−
√
p+1 [

1−
( r
R

)4−
√
p+1
]
, (A10)

YBp (r) ∼ f0r
1−
√
p+1

(p+ 1)(2 +
√
p+ 1)

(
ap + bp +

2apbp
2 +
√
p+ 1

)(
R

r

)4−
√
p+1

.

In the formal limit R→∞ the term YAp (r) has the singularity at p = 3. For any finite R there is no true singularity
at p = 3 and the exponential growth is an intermediate asymptotics (30). It is instructive to compare the situation
with three-dimensional model [18]. In this case the closed equation for the trace F = Fαα can be derived:

λ−1∂tF = L̂FF , L̂F = r2∂2
r + 6r∂r + 10, rd � r � R. (A11)

It can be checked easily that the Laplace transform Fp(r) has the true singularity at p = 15/4:

Fp(r) ∝ f0

(
L

r

)5/2
1√

p− 15/4

[
1−

( r
R

)√p−15/4
]
.

The cancellation of the divergence does not lead to elimination of the branching point at p = 15/4.
The long-time behavior (33) results from the singularity of the coefficient bp at p = 0. It is worth noting that

the expression (33) corresponds to the non-negative transverse spatial Fourier transform Fαβ(k, t) of the correlation
tensor:

Fαβ(k, t) ∝ f0R
2

(λt)2

(
δαβ −

kαkβ
k2

)
, kαFαβ(k, t) = 0.
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