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Three Large N Limits

e O(N) Vector: solvable because the “cactus”

diagrams can be summed. (¥ ) (X ¥X)

e Matrix (‘t Hooft) Limit: planar diagrams.
Solvable only in special cases.

* Tensor of rank three and higher. When
interactions are specially chosen, dominated
by the “melonic” diagrams. sonzom, Gurau, Riello,

Rivasseau; Carrozza, Tanasa; Witten; IK, Tarnopolsky
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O(N) x O(N) Matrix Model

e Theory of real matrices ¢2° with distinguishable
indices, i.e. in the bi-fundamental

representation of O(N)_xO(N), symmetry.
* The interaction is at least quartic: g tr ¢op'¢p¢’

* Propagators are represented by colored double
ines, and the interaction vertex is

e In d=0 or 1 special limits describe two-
dimensional quantum gravity.




e Inthelarge N limit
where gN is held fixed
we find planar Feynman
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From Bi- to Tri-Fundamentals

 For a 3-tensor with distinguishable indices the
propagator has index structure

<¢abc¢a’b’c’> _ 5aa’5bb’é‘ca’
* [t may be represented graphically by 3 colored
wires & b

 Tetrahedral interaction with abiC
O(N)_xO(N) xO(N). symmetry
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e Leading correction to the propagator has 3

index loops A

2l

e Requiring that this “melon” insertion is of
order 1 means that \ = ¢gN?/? must be held
fixed in the large N limit.

 Melonic graphs obtained by iterating

A
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Cables and Wires

e The Feynman graphs of the quartic field
theory may be resolved in terms of the
colored wires (triple lines)
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Non-Melonic Graphs

e Most Feynman graphs in the quartic field theory
are not melonic are therefore subdominant in the

new large N limit, e.g.

P

e Scalesas ¢°N® ~ N3\ N3/2

* None of the graphs with an odd number of
vertices are melonic.



 Here is the list of snail-free vacuum graphs up
to 6 vertices Kleinert, Schulte-Frohlinde

2 | ﬁ K :’/{? )Y
°{' i A l { }) /E é,:‘
’K A2
J ﬁ”és ,\gf i!}f ‘”q\ \3 ﬁ“ﬁ*‘zp
iwg %1% )j ﬁ W aigﬂ f("’
N D '
g/ /8 Q Q\ \3 q\ f T @( 3 ? ){

e Only 4 out of these 27 graphs are melonic.

e The number of melonic graphs with p vertices
grows as CP Bonzom, Gurau, Riello, Rivasseau




The Sachdev-Ye-Kitaev Model

* Quantum mechanics of a large number N, of

anti-commuting variables with action

1 d /9 _ . ,
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e Random couplings j have a Gaussian
distribution with zero mean.

* The model flows to strong coupling and
becomes nearly conformal. sachdey, ve; Georges,

Parcollet, Sachdev; Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford;
Jevicki, Suzuki, Yoon; Kitaev, Suh



 The simplest dynamical case is q=4.
* Exactly solvable in the large N, limit because

only the Feynman diagrams contribute
TN N NN

e Solid lines are fermion propagators, while
dashed lines mean disorder average.

 The exact solution shows resemblance with
physics of certain two-dimensional black holes.

Kitaev; Almheiri, Polchinski; Sachdev; Maldacena, Stanford, Yang; Engelsoy, Mertens,

Verlinde; Jensen; Kitaev, Suh; ...



* Spectrum for a single realization of N,,=32
model with q=4 Maldacena, Stanford

 No exact degeneracies, but the gaps are
exponentially small. Large low T entropy.

400 Eigenvalues for N=32, plotted with 300 bins
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Majorana Tensor QM

e E. Witten, “An SYK-Like Model Without
Disorder,” arXiv: 1610.09758.

 Appeared on the evening of Halloween:
October 31, 2016.

e [t is sometimes tempting to change the term
“melonic diagrams” to “pumpkinlike diagrams.”



The Gurau-Witten Model

 This model is called “colored” in the random
tensor literature because the anti-commuting 3-
tensor fields @f)ibc carry a label A=0,1,2,3.

_ Ib ab 1b al’ fbf’ Jdc
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 Perhaps more natural to call it "flavored.”

« The model has O(N)® symmetry with each
tensor in a tri-fundamental under a different
subset of the six symmetry groups.

e Contains 4N3 Majorana fermions.



The O(N)?> Model

e A pruned version: there are N3 Majorana
fermions IK, Tarnopolsky

, RN R R N A
{?:i.;.,ﬂbt.’*: L,a b'e } — {\) (a o bb {s) cC

( rF.r Y f1.r/
H i /L1 abc /C ab’c ’l,:r a’be @.-’Ja. b'e 7\&1
4 16

e Has O(N)_xO(N) _xO(N)_symmetry under
W — MY MY Mg 0™ My, My, My € O(N)
e The SO(N) symmetry charges are
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 The 3-tensors may be
associated with

indistinguishable vertices
of a tetrahedron.

e This is equivalent to ] A
& %
Cba;
 The triple-line Feynman
graphs are produced E E

using the propagator



 The tetrahedral term is the unique dynamical
quartic interaction with O(N)3 symmetry.

 The other possible terms are quadratic
Casimirs of the three SO(N) groups.
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In the model where SO(N)3is gauged, they
vanish.



O(N)3 vs. SYK Model

e Using composite indices I = (aibicy)

1
H :Eflllzlshllf yRy gt

The couplings take values 0,+1
1 b1l = Ouyay Ouzay Obybs Obyby Ocy s Ocyes — Ouyas Ouzay Obybs Obyby Ocycy Ocyca + 22 terms
e The number of distinct terms is

Z 111121314 = ZNQ)(N —1)*(N+2)
{fk}

e Much smaller than in SYK model with ~Ngyx =N3
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Schwinger-Dyson Equations

e Some are the same as in the SYK model «itev:

Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; Kitaev, Suh

Gty — ta) = Go(ty — ta) + g*°N? / dtdt'Go(t; — t)G(t — )Gt —t,)

Qe

* Neglecting the left-hand side in IR we find

_O_ =

1 )1/4 Sgn(tl — tg)

Gl — 1) = _(47T92N3 [ty — to|1/2



* Four point function

(™21 (£ )™ (b9) 8222 (t3) 122 % (t4)) = NG (t12)G(tza) + T'(t, - - ., ts)
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e |f we denote by I, the ladder with n rungs
I'=> T,

Fn+1(t1, c ey t4) — / dtdt,K(tl, tQ, t, t,)Fn(t, t,, t3, t4)

K(th tg; t3, t4) = —3g2N3G(t13)G(t24)G(t34)2



Spectrum of two-particle operators
* S-D equation for the three-point function cross,

Rosenhaus

tO)tlatQ _g dtSdtélK t13t2)t3:t4 t05t3:t4

‘U(to,tljtg) = (C)g(to)gb“bc(tl)@b“bc(tg)) Sgﬂl( 1‘—'t2)

[to — t1|"[to — ta|"[t1 — to|'/27"

e Scaling dimensions of operators 0Oj = y*°(D})**

3tan(Z(h — 1))
g( ?) 2 h — 1/2




e The first solution is h=2; dual to JT gravity.

g(h)
3|
I y=g(h)
2t |y |- y=1
: h=2 h=3.77 h=5.68
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 The higher scaling dimensions are
h = 3.77, 5.68, 7.63, 9.60 approaching h, — n+ 3



Tetrahedral Bosonic QFT

e Action with a potential that is not positive
definite IK, Tarnopolsky; Giombi, IK, Tarnopolsky
d 1 abc qu Labc
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* Schwinger-Dyson equation for 2pt function
Patashinsky, Pokrovsky (1963)
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e Has solution v, %,

G(p) _ A—l/Q((i’;)(ldF(g))l/ﬁl 1 P44,



Spectrum of two-particle spin zero
operators

e Schwinger-Dyson equation

/dd$3dd$4K($1,$2;ﬂ33,5134)%(333,584) — g(h)vh(l‘h-fb’z)

K(Jll, Lo, I3, .’Il'4) = 3A20($13)0($24)G($34)2
1
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e In d<4 the first solution is complex ¢ +ia(d)
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Complex Fixed Point in 4-¢ Dimensions

e The tetrahedron

Ot(;r.) _ @ﬂlblﬂl @albgcg @ﬂgblcg Gi]a.gbgcq

mixes at finite N with the pillow and double-sum
operators

OP(I) _ (@aﬂ?lq @a-ﬁmg@agbgcg @agbgq 4+ @alfnq @a.gblq @'a.gbgcg @albgcg + @(11-5101 @'albgq @a.gbwg @'agbgcg) :
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* The renormalizable action is

1 1
S = / ddx(acﬂ“@h“b’:@“@i’“b‘c + 7(9010:(x) + 920, () + 930-:.!3(;1?)))



e The large N scaling is

_ (4m)%;  (4m)%g _ (47)%g3
A= TNz T TN BTN

 The 2-loop beta functions and fixed points:
By = — €y + 293 .
bp = — €ga + (Uﬂ? + ggg ) — 209192 .
; ~ 4, ~ ~ | 5~2 =201 -~
bgs = — €g3 + (51‘-}"2 +4gog3 + 35?3) — 291(4g2 + 5gs3)
= (/Y2 g3 =E3i(e/2)V2, gt = Fi(3 £ V3)(e/2)1/2
e The scaling dimension of @“bﬂ‘-@@bc is

No=d—2+2(5+ ) =2+ ivV6e+ Oe)



A Richer Set of Models

The tetrahedral interaction is the simplest
possibility of obtaining a solvable large N
tensor model.

There are many others!

For the interaction of order 2n the maximal
tensor rank is 2n-1. When it is lower, the
theory may be called “subchromatic.” prakash, sinha

It is helpful to choose the dominant interaction
to be Maximally Single Trace (IMIST). rerrar, Rivasseau,

Valette; IK, Pallegar, Popov



Prismatic Bosonic QFT

e Large N limit dominated by the positive sextic
”prism" Interaction Giombi, IK, Popov, Prakash, Tarnopolsky
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e |tis subchromatic and MST (erasing any color
leaves the diagram connected).

* To obtain the large N solution
It IS convenient to rewrite

1 - ¢ A
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e Tensor counterpart of a bosonic SYK-like model.
Murugan, Stanford, Witten

 The IR solution in general dimension:

BA(;;, -+ A)\ =d d/z — 1< A(__{) < d/()
I'(Ag)I'(d—Ay) 2 ['(3A4)I'(d — 3A4)

D(§—Ap)T(—5+Ag)  T(§—34y)0(—+3A)

e In d=3—c¢

1 e, 208 (412 2\ 12692 5672\ 6
Bo=g7gT 3 +(9 +3)* - g ) o)

e For d=2.9 find numerically

Ay, = 0.456264 . A, =1.53121



Finite N

 The 3-¢ expansion at finite N may be
generated using standard perturbation theory.

* Need to include 7 more O(N)3 invariant
operators.

Vo LBEY:

7 99 94 96 Y8

e The 8 beta functlons have a prlsmatlc” flxed
point” for N>53. At large N the scaling

dimensions there agree with the Schwinger-
Dyson results.



 Dimensions of bilinear operators in d=2.9 and 2.75
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* For 16799 <d <28056 A, becomescomplex
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Complex CFTs

May appear after two real fixed points have

mergEd . Dymarsky, IK, Roiban; Rastelli, Pomoni; Kaplan, Lee, Son, Stephanov:
Gorbenko, Rychkov, Zan; Grabner, Gromov, Kazakov, Korchemsky; ...

Correspond to (weakly) first-order transitions.
Imaginary parts of scaling dimensions may be as

small as
G_Nf(d)

Appear in the O(N) model in 4<d<6 due to the

instanton effects McKane, Wallace, de Alcantara Bonfim (1984); Giombi,
Huang, Klebanov, Pufu Tarnopolsky (2019)

For large N an operator of dimension %+’iﬁ(d)
corresponds in dual AdS to a scalar violating the
Breitenlohner-Freedman stability bound:

m* < —d*/4



Two-Flavor O(N)3 Model

Interaction of two rank-3 Majorana tensors

with O(N)3 symmetry, with a parameter o
Kim, IK, Tarnopolsky, Zhao

b b b b b b b b:
H — % (l l1 1Cll £111 2027T 6112 1@21 ffz 2C1 e Z a1 1t1zr 3:1 26‘2@ ,a2 1021 312 2c1)

v abc ai1bac aob asbsc a1b aibac asbqc: b aib aibac asbic asb
+Qi_¢( 11111122122 1“1212221_}_,{“ 11‘11121222“12122“22 2C1 _}_,L 11"—1,(‘2122,(‘2212,(‘12 2‘11)

 Reduces to the bipartite model for o = —1
e Melonic S-D equations give 2-pt function

SN

1 sgn(ty —tq)
Gty —t1) = — ‘ =
(t2 = 1) (47?(3@2 + l)ng\“) [ty — tq|1/2




Discrete Symmetries

e Particle-hole symmetry »=x]Jw" + o)
1

1 — 1
I I ol Ny N
W= —=(v +1y) V= — (1 —
\/§ ( 1 2 ) \/5 ( 1 2 )
KilKk = —i KK =4 Ky'K = !

e The fermion number Q is conserved mod 4

ST I -
Q) = z’q’){ ’(,.-’,Jé =3 ! ']

1 1—3 -
HEJ”M( QQ(ZI’LJ’LK’L +’LI’LJ’LK’LL)+3(1+&)’LI’LJ’LR’LL)



Bilinear Operators

 The scaling dimensions of

()%n—kl _ ’(L 102n+1,l+ i _}_1202?’24—1 2 ! ()271—1—1 02?1—1—1 T ,LZOZ*n—I—l 2 !

on+l _ 1 a2ntl o a2n41 ) 2n i a2n | a2n,
O3 = 107" by + 07" )y 0" = @.:10,,%;2 - @,;207”@-;1 ,

are determined from

1 —a? 200(1 + «) 6 (1 — )
(g1(h), g2(h), g3(h), ga(h)) = (QA(}?): 1+ ga,QgA(h)! 1+ 302 ga(h), 1 + 302 gs(h)

g ) —
2 h—1/2 ’ 2 h—1/2

11 -3 an(Z(h
ga(h) = 225~ 5) () — LG+ 3)




Use transformation

Duality

Find equivalence

Apart from overall scaling ot energies, can
restrict to

!

g:

—1<a<-

S

vy = %(L’{’l + 1), Py =

(9, @) ~ (g, )

(Bae+1)g , —a+1

2

L
3

v

T 30+ 1

For a <0 operator Q has complex

dimension 3+ if(a) where jtann(rs/2) =

For small o
fla) =/ =20

+ O(a))

(V1 — 1)

30?2 — 3o

3a? +1
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Coupled SYK Models

To study low-energy spectrum numerically,
replace the two-flavor tensor model by its SYK
counterpart.

Double SYK model with a quartic coupling

H = i (XXAXTX +XXXGX: + Baxixixsxe)

A generalization of the Gross-Rosenhaus two-

flavor model.

Gives the same large N S-D equations and
scaling dimensions as the tensor model.



Green’s Functions

* Allow for both diagonal and off diagonal:

Gul7.™) = 3o (XD
e General properties
Gu(r) = =Gul(-7) . Gao(T) = —Gaa(—7) . Gia(7) = —=Gar(—7)

e Additional discrete symmetry implies
Gio(—7) = —Ga1(7) = Gia(7) , Goo(T) = G1a(T)

3S.q

\ SYK

i)
= log Pf(d4 Oy — X b) — 3/ dT(EHGH + Y19Go
0

2
_'I((lJrBa )(G + Giy) + 12a(1 — )Cllclg))



 The Schwinger-Dyson equations become

8TG11(T) —/ d: (/_111( )C;H[TJ) — 212(7' — Tf)Glg(Tf)) — (5(7’)
OTGlg(T) — /dTI(EH(T — Tf)C;lg[Tf) + 212(’7 — TJ)GH(T})) =0.

J 254 (7 ) = (1 4+ 3« )GH( )+ 6a(1 — a)Gra(T )612(1')
J2%10(7) = (1 + 303G, (7) 4+ 60 (1 — ) G2, (1) Gha(7)

e Solutions exhibit a phase transition

— — 3J =2, a0 = —1
05 J’J 20 o = 0.5 (. ) |

| I11 I
0 — G2
0 0




(Nearly) Conformal Window

* The critical temperature depends on alpha

(5*])(:1"“:

40 F

30

Symmetry broken phase
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e For o<a<1/3 thereis no symmetry breaking.

e The low-T entropy does not vary (g-theorem)
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Exact Diagonalizations

When -1<a<0 there are two nearly
degenerate lowest states followed by a gap

300+
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 The spectrum breaks up into 4 sectors due to
the conservation of Q mod 4.
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Symmetry Breaking

* The two lowest states show the breaking of Z,
symmetry for —1<a <0

e For o<ac<1/3 thereis no gap.
* No symmetry breaking:

Eigenvalues for Ngyk = 16, plotted with 300 bins
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Dual of a Wormhole?

 We can interpret the gapped phase with small
low-T entropy as the dual of a traversable
wormhole geometry. maidacena, ai

e |t appears only for one sign of the coupling:
a <0

e Asin the Gao-Jafferis-Wall
model.




Conclusions

 The O(N)3 fermionic tensor quantum
mechanics seems to be the closest non-random
counterpart of the basic SYK model for
Majorana fermions.

e Solution of S-D equations indicates a (nearly)
conformal phase with real scaling dimenions.

e Bosonic or fermionic generalizations can lead
to formally complex scaling dimensions with
real part d/2, indicating an instability of the
conformal phase.



Studied quantum mechanics of rank-3

Majorana tensors with O(N)3 symmetry and
guartic terms coupling the two, and its SYK
counterpart.

Find a “(nearly) conformal window” for positive
coupling.

A complex scaling dimension appears only for
negative coupling, where the true low T phase
exhibits the symmetry breaking. Numerical
calculations also indicate a

Relation to the Gao-Jafferis-Wall wormhole
construction?

Physical applications?
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