Hidden Symmetries near
 Cosmological Singularities

Thibault DAMOUR Institut des Hautes Études Scientifiques

International Conference dedicated to the 100th Anniversary of I. M. Khalatnikov Quantum Fluids, Quantum Field Theory and Gravity Landau Institute, October 17-20, 2019, Chernogolovka

Genericity of Cosmological Singularities?

Landau 1959: Is the big bang singularity of Friedmann universes a generic property of general relativistic cosmologies, or is it an artefact of the high degree of symmetry of these solutions?

Khalatnikov and Lifshitz 1963: look for generic inhomogeneous and anisotropic solutions near a singularity

$$
d s^{2}=-d t^{2}+\left(a^{2} \ell_{i} \ell_{j}+b^{2} m_{i} m_{j}+c^{2} n_{i} n_{j}\right) d x^{i} d x^{j}
$$

single homogeneous Friedmann scale factor $a(t) \rightarrow$ three inhomogeneous scale factors $a(t, \mathbf{x}), b(t, \mathbf{x}), c(t, \mathbf{x})$

KL63 did not succeed in finding the "general" solution of the complicated, coupled dynamics of a, b, c and tentatively concluded that a singularity is not generic.

Genericity of Cosmological Singularities?

local collapse: Penrose 1965; cosmology: Hawking 1966-7, HawkingPenrose 1970: Theorems about genericity of cosmological "singularity". They prove generic "incompleteness" of spacetime, without giving any information about the "singularity".

Belinsky, Khalatnikov, Lifshitz 1969:

- introduce a new approach to construct the "general" solution near $a b c \rightarrow 0$ of the coupled (inhomogeneous) dynamics of $a(t, \mathbf{x}), b(t, \mathbf{x})$, $c(t, \mathbf{x})$,
- find that, at each point of space \mathbf{x}, the dynamics of a, b, c is chaotic.

The BKL conjecture has been confirmed both by numerical simulations (Weaver-Isenberg-Berger 1998, Berger-Moncrief 1998, Berger et al 1998-2001; Garfinkle 2002-2007; Berger's Living Review) and by analytical studies (Damour-Henneaux-Nicolai 2003; Uggla et al 20032007; Damour-De Buyl 2008).

BKL chaos near a big bang or a big crunch

BIG CRUNCH

Dynamics of BKL a, b, c system

January 1968, at the Institut Henri Poincaré, Isaak Khalatnikov gives a seminar in which he announces to the western world the results of BKL. He shows the system of equations for the three local scale factors a, b, c [with new time variable $d \tau=-d t /(a b c)]$

$$
\begin{aligned}
& 2 \frac{d^{2} \ln a}{d \tau^{2}}=\left(b^{2}-c^{2}\right)^{2}-a^{4} \\
& 2 \frac{d^{2} \ln b}{d \tau^{2}}=\left(c^{2}-a^{2}\right)^{2}-b^{4} \\
& 2 \frac{d^{2} \ln c}{d \tau^{2}}=\left(a^{2}-b^{2}\right)^{2}-c^{4}
\end{aligned}
$$

J.A. Wheeler was in the audience and immediately pointed out the possibility of a mechanical analogy for this model. He informed his former student Charles Misner (who was independently working on the Bianchi IX dynamics) of the BKL results. In 1969 Misner published a mechanical-like, Lagrangian analysis of the Bianchi IX (a, b, c) system under the catchy name of "mixmaster universe".

Cosmological Billiards

(Misner 1969a, 1969b [quantum], Chitre 1972, . . ., Damour-Henneaux-Nicolai 2003, . . ., Belinski-Henneaux 2018)

$$
d s^{2}=-d t^{2}+\left(a^{2} \ell_{i} \ell_{j}+b^{2} m_{i} m_{j}+c^{2} n_{i} n_{j}\right) d x^{i} d x^{j}
$$

exponential parametrisation: $a=e^{-\beta^{1}}, b=e^{-\beta^{2}}, c=e^{-\beta^{3}}$
Lagrangian ruling the dynamics of the β 's at each spatial point

$$
\mathcal{L}=\frac{1}{2} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}-V(\beta)
$$

Kinetic metric $G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}=\sum_{a}\left(\dot{\beta}^{a}\right)^{2}-\left(\sum_{a} \dot{\beta}^{a}\right)^{2} \quad$ (DeWitt metric)
Potential $V(\beta)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$
Wall forms $w_{A}(\beta)$: e.g. gravitational walls: $w_{a b c}^{(g)}(\beta)=\sum_{e} \beta^{e}+\beta^{a}-\beta^{b}-\beta^{c}$

Billiard in β space: Toda-like exponential potentials $V(\beta)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$

$$
\begin{aligned}
& \text { Lorentzian-signatuer metric: } G^{a b} \pi_{a} \pi_{b} \leftrightarrow G_{a b} d \beta^{a} d \beta^{b}
\end{aligned}
$$

Einstein Billiards (chaotic versus non-chaotic)

$$
\begin{aligned}
& \beta^{N}=\rho \gamma^{N} \\
& G_{\mu \nu} \gamma^{N} \gamma^{v}=-1 \\
& \text { ON UNIT AUTURS HYPERSOLDD }
\end{aligned}
$$

Chaotic billiard for $D=4$ gravity (BKL, Misner, Chitre)

Non-chaotic Billiards

Asymptotically Kasner-like; amenable to Fuchsian analysis if one assumes analyticity in space
$D=4$ gravity + scalar field (Belinsky-Khalatnikov 73, AnderssonRendall 01)
$D \geq 11$ pure gravity (Demaret et al 85, Damour-Henneaux-RendallWeaver 02)
$D \geq 39$ pure gravity, but without assuming analyticity: RodnianskiSpeck 18 gives a mathematical proof for near-isotropic initial data.

Kac-Moody algebras

Generalization of the well-known "triangular" structure of $A_{1}=s o(3)=s u(2)=s /(2)$: diagonalizable (Cartan) generator: J_{z}, and raising/lowering generators: $J_{ \pm}=J_{x} \pm i J_{y}$ with $\left[J_{z}, J_{+}\right]=+J_{+} ; \quad\left[J_{z}, J_{-}\right]=-J_{-} ; \quad\left[J_{+}, J_{-}\right]=2 J_{z}$

Rank r : r mutually commuting Cartan generators h_{i} and r simple raising (e_{i}) and lowering $\left(f_{i}\right)$ generators:

$$
\left[h_{i}, h_{j}\right]=0 ;\left[h_{i}, e_{j}\right]=A_{i j} e_{j} ; \quad\left[h_{i}, f_{j}\right]=-A_{i j} f_{j} ; \quad\left[e_{i}, f_{j}\right]=\delta_{i j} h_{j}
$$

Serre relations: $a d_{e_{i}}^{1-A_{i j}} e_{j}=0 ; a d_{i_{i}}^{1-A_{i j}} f_{j}=0$
$A_{i j}=$ Cartan matrix: $A_{i i}=+2, A_{i j} \in-\mathbb{N}$
Roots: $\alpha=$ linear form on Cartan: $h=\sum_{i} \beta^{i} h_{i} \rightarrow \alpha(h)=\alpha_{i} \beta^{i}$

$$
\begin{gathered}
E_{\alpha} \sim\left[e_{i_{1}}\left[e_{i_{2}}\left[e_{i_{3}}, \ldots\right]\right]\right] \quad \alpha=n_{1} \alpha^{(1)}+n_{2} \alpha^{(2)}+\ldots+n_{r} \alpha^{(r)} \\
e_{i}=E_{\alpha^{(i)}} \text { simple roots; }\left[h, E_{\alpha}^{(s)}\right]=\alpha(h) E_{\alpha}^{(s)} \quad A_{i j}=\frac{2\left(\alpha^{(i)}, \alpha^{(j)}\right)}{\left(\alpha^{(i)}, \alpha^{(i)}\right)}
\end{gathered}
$$

Dynkin Diagrams (= Cartan Matrix) of E_{10} and $A E_{3}$

Figure: Dynkin diagram of E_{10} with numbering of nodes.
Cartan matrix of $A E_{3}:\left(A_{i j}\right)=\left(\begin{array}{ccc}2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$

Dynkin diagram $A E_{3}$

E_{10} and $A E_{3}$ Root Diagrams: each root $\alpha \leftrightarrow$ a Lie-algebra generator E_{α}

Cosmological Singularities and Hyperbolic Kac-Moody Algebras:

 Billiard Walls = Kac-Moody Roots potentials $V(\beta)=\sum_{a} c_{A}(\ldots) e^{-2 w_{A}(\beta)}$ with $w_{A}(\beta)=\alpha(\beta)$+ much deeper gravity/coset correspondence
Damour, Henneaux 2001; Damour, Henneaux, Julia, Nicolai 2001; Damour, Henneaux, Nicolai 2002

Bosonic EOM of SUGRA 11

$D=11$ spacetime, zero-shift slicing ($N^{i}=0$) time-independent spatial coframe $\theta^{a}(x) \equiv$ $E^{a}{ }_{i}(x) d x^{i}, i=1, \ldots, 10 ; a=1, \ldots, 10$ choose time coordinate x^{0} s.t. lapse $N=\sqrt{G}$ with $G:=\operatorname{det} G_{a b}$
structure constants of frame: $d \theta^{a}=\frac{1}{2} C_{b c}^{a} \theta^{b} \wedge \theta^{c}$; frame derivative $\partial_{a} \equiv E^{i}{ }_{a}(x) \partial_{i}$; 3-form $\mathcal{A} ; 4$-form $\mathcal{F}=d \mathcal{A} ; 2 G_{a d} \Gamma_{b c}^{d}=C_{a b c}+C_{b c a}-C_{c a b}+\partial_{b} G_{c a}+\partial_{c} G_{a b}-\partial_{a} G_{b c}$

$$
\begin{gathered}
d s^{2}=-N^{2}\left(d x^{0}\right)^{2}+G_{a b} \theta^{a} \theta^{b} \\
\mathcal{F}=\frac{1}{3!} \mathcal{F}_{0 a b c} d x^{0} \wedge \theta^{a} \wedge \theta^{b} \wedge \theta^{c}+\frac{1}{4!} \mathcal{F}_{a b c d} \theta^{a} \wedge \theta^{b} \wedge \theta^{c} \wedge \theta^{d} \\
\partial_{0}\left(G^{a c} \partial_{0} G_{c b}\right)=\frac{1}{6} G \mathcal{F}^{a \beta \gamma \delta} \mathcal{F}_{b \beta \gamma \delta}-\frac{1}{72} G \mathcal{F}^{\alpha \beta \gamma \delta} \mathcal{F}_{\alpha \beta \gamma \delta} \delta_{b}^{a}-2 G R_{b}^{a}(\Gamma, C) \\
\partial_{0}\left(G \mathcal{F}^{0 a b c}\right)=\frac{1}{144} \varepsilon^{a b c a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} b_{4}} \mathcal{F}_{0 a_{1} a_{2} a_{3}} \mathcal{F}_{b_{1} b_{2} b_{3} b_{4}} \\
+\frac{3}{2} G \mathcal{F}^{d e[a b} C^{c]}{ }_{d e}-G C^{e}{ }_{d e} \mathcal{F}^{d a b c}-\partial_{d}\left(G \mathcal{F}^{d a b c}\right) \\
\partial_{0} \mathcal{F}_{a b c d}=6 \mathcal{F}_{0 e[a b} C^{e}{ }_{c d]}+4 \partial_{[a} \mathcal{F}_{0 b c d]}
\end{gathered}
$$

Gravity/Kac-Moody Coset Correspondence

Appearance of E_{10} in the "near cosmological singularity limit" (where a Belinski-Khalatnikov-Lifshitz chaotic behavior arises) suggests the existence of a supergravity/ E_{10} coset correspondence (Damour, Henneaux, Nicolai '02)
[related suggestions: E_{10}, Ganor '99 '04; E_{11} : West '01]
The 'singularity' is 'resolved' by the effective 'disappearance' of space, and the replacement of dynamical fields, $g_{i j}(t, \mathbf{x}), \mathcal{A}_{i j k}(t, \mathbf{x}), \ldots$ by a Liealgebraic variable $g(t) \in E_{10}(\mathbb{Z}) \backslash E_{10}(\mathbb{R}) / K_{10}(\mathbb{R})$

Basic Idea: two 'dual' descriptions

$$
\begin{array}{ll}
\text { SUGRA }_{11}(O R M \text {-Tapher })
\end{array} \quad \begin{aligned}
& \text { MASSLESS SPINNING PARTICLE } \\
& G_{\mu \nu}(t, \vec{x}) \\
& A_{\mu v \lambda}(t, \vec{x}) \\
& \psi_{\mu}(t, \vec{x})
\end{aligned}
$$

Supergravity Description
$G_{\mu \nu}(t, \mathbf{x}), \mathcal{A}_{\mu \nu \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x})$
in (T^{10} ?) compactified space

$$
\mathcal{R} \ll \ell_{P}^{-2}
$$

$\mathcal{R} \gg \ell_{P}^{-2}$

Gravity/coset correspondence

(super)gravity \leftrightarrow massless (spinning) particle on G / K

$g(t) \in G / K$; velocity $v \equiv \partial_{t} g g^{-1} \in \operatorname{Lie}(G)$ is decomposed into $v=$ $\mathcal{P}+\mathcal{Q}$ where $\mathcal{Q} \in \operatorname{Lie}(K)$ and $\mathcal{P}=v^{\text {sym }}=\frac{1}{2}\left(v+v^{\top}\right) \in \operatorname{Lie}(G)-\operatorname{Lie}(K)$

Coset Action for massless particle:

$$
S_{1_{\mathrm{Bos}}}^{\text {coset }}=\int \frac{d t}{n(t)} \frac{1}{4}\langle\mathcal{P}(t), \mathcal{P}(t)\rangle
$$

$n(t):$ coset lapse \rightarrow constraint $\langle\mathcal{P}(t), \mathcal{P}(t)\rangle=0$
For hyperbolic (or more generally Lorentzian) Kac-Moody algebras the coset G / K is an infinite dimensional Lorentzian space of signature $-+++++\ldots$

Evidence for gravity/coset correspondence

Damour, Henneaux, Nicolai 02; Damour, Kleinschmidt, Nicolai 06; de Buyl, Henneaux, Paulot 06; Kleinschmidt, Nicolai 06
Insert in $S_{1}^{\text {COSET }}=\int d t\left\{\frac{1}{4 n(t)}\langle P(t), P(t)\rangle-\frac{i}{2}\left(\Psi(t) \mid \mathcal{D}^{\text {vs }} \Psi(t)\right)_{\mathrm{vs}}+\ldots\right\}$ the $G L(10)$ level expansion of the coset element

$$
g(t)=\exp \left(h_{b}^{a}(t) K_{a}^{b}\right) \times
$$

$$
\times \exp \left[\frac{1}{3!} A_{a b c}(t) E^{a b c}+\frac{1}{6!} A_{a_{1} \ldots a_{6}}(t) E^{a_{1} \ldots a_{6}}+\frac{1}{9!} A_{a_{0} \mid a_{1} \ldots a_{8}}(t) E^{a_{0} \mid a_{1} \ldots a_{8}}+\ldots\right]
$$

Agreement (up to height 29) of EOM of $g^{a b}(t)=\left(e^{h}\right)_{c}^{a}\left(e^{h}\right)_{c}^{b}, A_{a b c}(t), A_{a_{1} \ldots a_{6}}(t)$, $A_{a_{0} \mid a_{1} \ldots a_{8}}(t)$, and $\Psi_{a}^{\text {coset }}(t)$ with supergravity EOM (including lowest spatial gradients) for $G_{\mu \nu}(t, \mathbf{x}), \mathcal{A}_{\mu \nu \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x})$ with dictionary:
$g^{a b}(t)=G^{a b}\left(t, \mathbf{x}_{0}\right), \quad \dot{A}_{a b c}(t)=\mathcal{F}_{0 a b c}\left(t, \mathbf{x}_{0}\right)$,
$D A^{a_{1} \ldots a_{6}}(t)=-\frac{1}{4!} \varepsilon^{a_{1} \ldots a_{6} b_{1} \ldots b_{4}} \mathcal{F}_{b_{1} \ldots b_{4}}\left(t, \mathbf{x}_{0}\right)$,
$D A^{b \mid a_{1} \ldots a_{8}}(t)=\frac{3}{2} \varepsilon^{a_{1} \ldots a_{8} b_{1} b_{2}} C_{b_{1} b_{2}}^{b}\left(t, \mathbf{x}_{0}\right)$
and $\Psi_{a}^{\text {coset }}(t)=G^{1 / 4} \psi_{a}\left(t, \mathbf{x}_{0}\right)$
Moreover, \exists roots in E_{10} formally associated with the infinite towers of higher spatial gradients of $G_{\mu \nu}(t, \mathbf{x}), \mathcal{A}_{\mu \nu \lambda}(t, \mathbf{x}), \psi_{\mu}(t, \mathbf{x})$

$K\left(E_{10}\right)$ Structure of Gravitino Eq. of Motion

In the gauge $\psi_{0}^{(11)}=\Gamma_{0} \Gamma^{a} \psi_{a}^{(11)}$, the equation of motion of the rescaled gravitino $\psi_{a}^{(10)}:=g^{1 / 4} \psi_{a}^{(11)}$ (neglecting cubic terms) reads

$$
\mathcal{E}_{a}=\partial_{t} \psi_{a}^{(10)}+\omega_{t a b}^{(11)} \psi^{(10) b}+\frac{1}{4} \omega_{t c d}^{(11)} \Gamma^{c d} \psi_{a}^{(10)}
$$

$$
-\frac{1}{12} F_{t b c d}^{(11)} \Gamma^{b c d} \psi_{a}^{(10)}-\frac{2}{3} F_{t a b c}^{(11)} \Gamma^{b} \psi^{(10) c}+\frac{1}{6} F_{t b c d}^{(11)} \Gamma_{a}^{b c} \psi^{(10) d}
$$

$$
+\frac{N}{144} F_{b c d e}^{(11)} \Gamma^{0} \Gamma^{b c d e} \psi_{a}^{(10)}+\frac{N}{9} F_{a b c d}^{(11)} \Gamma^{0} \Gamma^{b c d e} \psi_{e}^{(10)}-\frac{N}{72} F_{b c d e}^{(11)} \Gamma^{0} \Gamma_{a b c d e f} \psi^{(10) f}
$$

$$
+N\left(\omega_{a b c}^{(11)}-\omega_{b a c}^{(11)}\right) \Gamma^{0} \Gamma^{b} \psi^{(10) c}+\frac{N}{2} \omega_{a b c}^{(11)} \Gamma^{0} \Gamma^{b c d} \psi_{d}^{(10)}-\frac{N}{4} \omega_{b c d}^{(11)} \Gamma^{0} \Gamma^{b c d} \psi_{a}^{(10)}
$$

$$
+N g^{1 / 4} \Gamma^{0} \Gamma^{b}\left(2 \partial_{a} \psi_{b}^{(11)}-\partial_{b} \psi_{a}^{(11)}-\frac{1}{2} \omega_{c c b}^{(11)} \psi_{a}^{(11)}-\omega_{00 a}^{(11)} \psi_{b}^{(11)}+\frac{1}{2} \omega_{00 b}^{(11)} \psi_{a}^{(11)}\right) .
$$

Apart from the last line, this is equivalent to the $K\left(E_{10}\right)$-covariant equation

$$
0=\stackrel{\mathrm{vs}}{\mathcal{D}} \Psi(t):=\left(\partial_{t}-\stackrel{\mathrm{Qs}}{\mathcal{Q}}(t)\right) \Psi(t) .
$$

expressing the parallel propagation of the $K\left(E_{10}\right)$ vector-spinor $\Psi(t)$ along the $E_{10} / K\left(E_{10}\right)$ worldline of the coset particle, with the $K\left(E_{10}\right)$ connection $\mathcal{Q}(t):=\frac{1}{2}\left(v(t)-v^{\top}(t)\right) \in \operatorname{Lie}\left(K\left(\mathrm{E}_{10}\right)\right)$, with $v(t)=\partial_{t} g g^{-1} \in \mathfrak{e}_{10} \equiv \operatorname{Lie}\left(E_{10}\right)$.

A concrete case study (Damour, Spindel 2013, 2014, 2017)

- Quantum supersymmetric Bianchi IX, i.e. quantum dynamics of a supersymmetric triaxially squashed three-sphere: with squashing parameters $a=e^{-\beta^{1}}, \quad b=e^{-\beta^{2}}, \quad c=e^{-\beta^{3}}$

Susy Quantum Cosmology: Obregon et al ≥ 1990; D'Eath, Hawking, Obregon, 1993, D'Eath ≥ 1993, Csordas, Graham 1995, Moniz $\geq 94, \ldots$

Quantum susy Bianchi IX

Technically: Reduction to one, time-like, dimension of the action of $D=4$ simple supergravity for an SU(2)-homogeneous (Bianchi IX) cosmological model \rightarrow (essentially) Susy Quantum Mechanical model

$$
\begin{aligned}
g_{\mu \nu} d x^{\mu} d x^{\nu} & =-N^{2}(t) d t^{2} \\
& +g_{a b}(t)\left(\tau^{a}(x)+N^{a}(t) d t\right)\left(\tau^{b}(x)+N^{b}(t) d t\right),
\end{aligned}
$$

τ^{a} : left-invariant one-forms on $S U(2) \approx S_{3}: d \tau^{a}=\frac{1}{2} C_{b c}^{a} \tau^{b} \wedge \tau^{c}$; here $C_{b c}^{a}=\varepsilon_{a b c}$ plays the role of a nonabelian "gravitational flux", or constant momentum of (coset) dual graviton.

Dynamical degrees of freedom

- 6 bosonic dof: Gauss-decomposition of the metric: $g_{b c}=$ $\sum_{\hat{a}=1}^{3} e^{-2 \beta^{a}} S^{\hat{a}}{ }_{b}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) S^{\hat{a}}{ }_{c}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
$\beta^{a}=\left(\beta^{1}(t), \beta^{2}(t), \beta^{3}(t)\right)$ cologarithms of the squashing parameters a, b, c of 3 -sphere $a=e^{-\beta^{1}}, \quad b=e^{-\beta^{2}}, \quad c=e^{-\beta^{3}}$ and three Euler angles: $\varphi_{a}=\left(\varphi_{1}(t), \varphi_{2}(t), \varphi_{3}(t)\right)$ parametrizing the orthogonal matrix S_{b}^{a}
- and 12 fermionic dof: Gravitino components in specific gaugefixed orthonormal frame $\theta^{\widehat{\alpha}}$ canonically associated with the Gaussdecomposition $\theta^{\widehat{0}}=N(t) d t, \theta^{\widehat{a}}=\sum_{b} e^{-\beta^{a}(t)} S^{\widehat{a}}{ }_{b}\left(\varphi_{c}(t)\right)\left(\tau^{b}(x)+N^{b}(t) d t\right)$
- redefinitions of the gravitino field:

$$
\Psi_{\hat{\alpha}}^{A}(t):=g^{1 / 4} \psi_{\hat{\alpha}}^{A} \quad \text { and } \quad \Phi_{A}^{a}:=\Sigma_{B} \gamma_{A B}^{\widehat{a}} \Psi_{\hat{a}}^{B} \quad \text { (no summation on } \hat{a} \text {) }
$$

- 3×4 gravitino components $\Phi_{A}^{a}, a=1,2,3 ; A=1,2,3,4$.

Supersymmetric action (first order form)

$$
S=\int d t\left[\pi_{a} \dot{\beta}^{a}+p_{\varphi^{a}} \dot{\varphi}^{a}+\frac{i}{2} G_{a b} \Phi_{A}^{a} \dot{\Phi}_{A}^{b}+\bar{\Psi}_{\hat{0}}^{\prime A} \mathcal{S}_{A}-\tilde{N} H-N^{a} H_{a}\right]
$$

$G_{a b}$: Lorentzian-signature quadratic form:

$$
G_{a b} d \beta^{a} d \beta^{b} \equiv \sum_{a}\left(d \beta^{a}\right)^{2}-\left(\sum_{a} d \beta^{a}\right)^{2}
$$

$G_{a b}$ defines the kinetic terms of the gravitino, as well as those of the β^{a} s:

$$
\frac{1}{2} G_{a b} \dot{\beta}^{a} \dot{\beta}^{b}
$$

Lagrange multipliers \longrightarrow Constraints $\mathcal{S}_{A} \approx 0, H \approx 0, H_{a} \approx 0$

Quantization

- Bosonic dof:

$$
\widehat{\pi}_{a}=-i \frac{\partial}{\partial \beta^{a}} ; \quad \hat{p}_{\varphi_{a}}=-i \frac{\partial}{\partial \varphi_{a}}
$$

- Fermionic dof:

$$
\widehat{\Phi}_{A}^{a} \widehat{\Phi}_{B}^{b}+\widehat{\Phi}_{B}^{b} \widehat{\Phi}_{A}^{a}=G^{a b} \delta_{A B}
$$

This is the Clifford algebra $\operatorname{Spin}\left(8^{+}, 4^{-}\right)$

- The wave function of the universe $\Psi_{\sigma}\left(\beta^{a}, \varphi_{a}\right)$ is a 64-dimensional spinor of $\operatorname{Spin}(8,4)$ and the gravitino operators Φ_{A}^{a} are 64×64 "gamma matrices" acting on $\Psi_{\sigma}, \sigma=1, \ldots, 64$
- Crucially depends on the terms cubic and quartic in Fermions

Dirac Quantization of the Constraints

$$
\widehat{\mathcal{S}}_{A} \Psi=0, \quad \widehat{H} \Psi=0, \quad \widehat{H}_{a} \Psi=0
$$

Diffeomorphism constraint $\Leftrightarrow \hat{p}_{\varphi_{a}} \Psi=-i \frac{\partial}{\partial \varphi_{a}} \Psi=0$: "s wave" w.r.t. the Euler angles
\longrightarrow Wave function $\Psi\left(\beta^{a}\right)$ submitted to constraints

$$
\widehat{\mathcal{S}}_{A}(\widehat{\pi}, \beta, \widehat{\Phi}) \Psi(\beta)=0, \quad \widehat{H}(\widehat{\pi}, \beta, \widehat{\Phi}) \Psi(\beta)=0
$$

$\hat{\pi}_{a}=-i \frac{\partial}{\partial \beta^{a}} \Rightarrow 4 \times 64+64$ PDE's for the 64 functions $\Psi_{\sigma}\left(\beta^{1}, \beta^{2}, \beta^{3}\right)$

Heavily overdetermined system of PDE's

Explicit form of the SUSY constraints $\left(\gamma^{5} \equiv \gamma^{0 \hat{1} \hat{2} 3}, \beta_{12} \equiv \beta^{1}-\beta^{2}, \widehat{\Phi}^{12} \equiv \widehat{\Phi}^{1}-\widehat{\Phi}^{2}\right)$

$$
\begin{aligned}
\widehat{\mathcal{S}}_{A} & =-\frac{1}{2} \sum_{a} \widehat{\pi}_{a} \Phi_{A}^{a}+\frac{1}{2} \sum_{a} e^{-2 \beta^{a}}\left(\gamma^{5} \Phi^{a}\right)_{A} \\
& -\frac{1}{8} \operatorname{coth} \beta_{12}\left(\widehat{S}_{12}\left(\gamma^{12} \widehat{\Phi}^{12}\right)_{A}+\left(\gamma^{12} \widehat{\Phi}^{12}\right)_{A} \widehat{S}_{12}\right) \\
& +\operatorname{cyclic}_{(123)}+\frac{1}{2}\left(\widehat{\mathcal{S}}_{A}^{\text {cubic }}+\widehat{\mathcal{S}}_{A}^{\text {cubic } \dagger}\right)
\end{aligned}
$$

$$
\begin{aligned}
\widehat{S}_{12}(\widehat{\Phi}) & =\frac{1}{2}\left[\left(\overline{\tilde{\Phi}}^{3} \gamma^{\hat{0} \hat{1} \hat{2}}\left(\widehat{\Phi}^{1}+\widehat{\Phi}^{2}\right)\right)+\left(\overline{\bar{\Phi}}^{1} \gamma^{\hat{1} \hat{\imath} \hat{\Phi}} \widehat{\Phi}^{1}\right)\right. \\
& \left.+\left(\overline{\bar{\Phi}}^{2} \gamma^{0} \hat{1} \hat{\imath} \widehat{\Phi}^{2}\right)-\left(\overline{\bar{\Phi}}^{1} \gamma^{\hat{0} \hat{1} \hat{2}} \widehat{\Phi}^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\mathcal{S}}_{A}^{\text {cubic }} & =\frac{1}{4} \sum_{a}\left(\overline{\widetilde{\Psi}}_{0}, \gamma^{\widehat{0}} \widehat{\Psi}_{\widehat{a}}\right) \gamma^{\widehat{0}} \widehat{\Psi}_{\widehat{a}}^{A}-\frac{1}{8} \sum_{a, b}\left(\overline{\widetilde{\Psi}}_{\widehat{a}} \gamma^{\widehat{0}} \widehat{\Psi}_{\widehat{b}}\right) \gamma^{\widehat{a}} \widehat{\Psi}_{\widehat{b}}^{A} \\
& +\frac{1}{8} \sum_{a, b}\left(\overline{\widetilde{\Psi}}_{0}, \gamma^{\widehat{a}} \Psi_{\widehat{b}}\right)\left(\gamma^{\widehat{a}} \Psi_{\widehat{b}}^{A}+\gamma^{\widehat{b}} \Psi_{\widehat{a}}^{A}\right)
\end{aligned}
$$

(Open) Superalgebra satisfied by the $\widehat{\mathcal{S}}_{A}$'s and \widehat{H}

$$
\widehat{\mathcal{S}}_{A} \hat{\mathcal{S}}_{B}+\widehat{\mathcal{S}}_{B} \hat{\mathcal{S}}_{A}=4 i \sum_{C} \widehat{L}_{A B}^{C}(\beta) \hat{\mathcal{S}}_{C}+\frac{1}{2} \hat{H} \delta_{A B}
$$

$$
\left[\widehat{S}_{A}, \widehat{H}\right]=\widehat{M}_{A}^{B} \widehat{\mathcal{B}}_{B}+\widehat{N}_{A} \hat{H}
$$

Root diagram of $A E_{3}=A_{1}^{++}$

3-dimensional Lorentzian-signature space: metric in Cartan sub-algebra

$$
G_{a b} d \beta^{a} d \beta^{b}=\sum_{a}\left(d \beta^{a}\right)^{2}-\left(\sum_{a} d \beta^{a}\right)^{2}
$$

(directly linked to Einstein action: $K_{i j}^{2}-\left(K_{i}^{i}\right)^{2}$)

Kac-Moody Structures Hidden in the Quantum Hamiltonian

$2 \widehat{H}=G^{a b}\left(\widehat{\pi}_{a}+i A_{a}\right)\left(\widehat{\pi}_{b}+i A_{b}\right)+\widehat{\mu}^{2}+W_{g}^{\text {bos }}(\beta)+\widehat{W}_{g}^{\text {spin }}(\beta)+\widehat{W}_{\text {sym }}^{\text {spin }}(\beta)$.
$G_{a b} \leftrightarrow$ metric in Cartan subalgebra of $A E_{3}$

$$
\begin{gathered}
W_{g}^{\text {bos }}(\beta)=\frac{1}{2} e^{-2 \alpha_{11}^{g}(\beta)}-e^{-2 \alpha_{23}^{g}(\beta)}+\operatorname{cyclic}_{123} \\
\widehat{W}_{g}^{\text {spin }}(\beta, \widehat{\Phi})=e^{-\alpha_{11}^{g}(\beta)} \widehat{\jmath}_{11}(\widehat{\Phi})+e^{-\alpha_{22}^{g}(\beta)} \widehat{\jmath}_{22}(\widehat{\Phi})+e^{-\alpha_{33}^{g}(\beta)} \widehat{\jmath}_{33}(\widehat{\Phi}) .
\end{gathered}
$$

Linear forms $\alpha_{a b}^{g}(\beta)=\beta^{a}+\beta^{b} \Leftrightarrow$ six level-1 roots of $A E_{3}$

$$
\widehat{W}_{\text {sym }}^{\text {spin }}(\beta)=\frac{1}{2} \frac{\left(\widehat{S}_{12}(\widehat{\Phi})\right)^{2}-1}{\sinh ^{2} \alpha_{12}^{\text {sym }}(\beta)}+\operatorname{cyclic}_{123},
$$

Linear forms $\alpha_{12}^{\text {sym }}(\beta)=\beta^{1}-\beta^{2}, \alpha_{23}^{\text {sym }}(\beta)=\beta^{2}-\beta^{3}, \alpha_{31}^{\text {sym }}(\beta)=\beta^{3}-\beta^{1}$ \Leftrightarrow three level-0 roots of $A E_{3}$

Spin dependent (Clifford) Operators coupled to $A E_{3}$ roots

$$
\begin{aligned}
& \widehat{S}_{12}(\widehat{\Phi})=\frac{1}{2}\left[\left(\widehat{\Phi}^{3} \gamma^{\hat{0} \hat{\mathbf{1}}}\left(\widehat{\Phi}^{1}+\widehat{\Phi}^{2}\right)\right)+\left(\widehat{\Phi}^{1} \gamma^{\hat{0} \hat{1} \hat{\Phi}} \widehat{\Phi}^{1}\right)\right. \\
& \left.+\left(\bar{\Phi}^{2} \gamma^{\hat{0} \hat{1} \hat{\Phi}} \widehat{\Phi}^{2}\right)-\left(\bar{\Phi}^{1} \gamma^{\hat{0} \hat{1} \hat{\Phi}} \widehat{\Phi}^{2}\right)\right],
\end{aligned}
$$

$$
\widehat{J}_{11}(\widehat{\Phi})=\frac{1}{2}\left[\bar{\Phi}^{1} \gamma^{\uparrow \hat{\imath} \hat{3}}\left(4 \widehat{\Phi}^{1}+\widehat{\Phi}^{2}+\widehat{\Phi}^{3}\right)+\bar{\Phi}^{2} \gamma^{\hat{\imath} \hat{\imath} \hat{\Phi}} \widehat{\Phi}^{3}\right] .
$$

- $\hat{S}_{12}, \hat{S}_{23}, \hat{S}_{31}, \widehat{J}_{11}, \widehat{J}_{22}, \widehat{J}_{33}$ generate (via commutators) a 64dimensional representation of the (infinite-dimensional) "maximally compact" sub-algebra $K\left(A E_{3}\right) \subset A E_{3}$. [The fixed set of the (linear) Chevalley involution, $\omega\left(\boldsymbol{e}_{i}\right)=-f_{i}, \omega\left(f_{i}\right)=-\boldsymbol{e}_{i}, \omega\left(h_{i}\right)=-h_{i}$, which is generated by $x_{i}=e_{i}-f_{i}$]

The "squared-mass" Quartic Operator $\widehat{\mu}^{2}$ in \widehat{H}

In the middle of the Weyl chamber (far from all the hyperplanes $\alpha_{i}(\beta)=0$):

$$
2 \widehat{H} \simeq \widehat{\pi}^{2}+\widehat{\mu}^{2}
$$

where $\widehat{\mu}^{2} \sim \sum \widehat{\Phi}^{4}$ gathers many complicated quartic-in-fermions terms (including $\sum \widehat{S}_{a b}^{2}$ and the infamous ψ^{4} terms of supergravity).

Remarkable Kac-Moody-related facts:

- $\widehat{\mu}^{2}$ commutes with the $K\left(A E_{3}\right)$ generators $\widehat{S}_{a b}, \widehat{J}_{a b}$
- $\widehat{\mu}^{2}$ is \sim the square of a very simple operator \in Center

$$
\widehat{\mu}^{2}=\frac{1}{2}-\frac{7}{8} \widehat{C}_{F}^{2}
$$

where $\widehat{C}_{F}:=\frac{1}{2} G_{a b} \overline{\Phi^{a}} \gamma^{\hat{\imath} \hat{\imath} \hat{3}} \widehat{\Phi}^{b}$.

Solutions of SUSY constraints

Overdetermined system of four 64-component Dirac-like equations
$\widehat{\mathcal{S}}_{A} \Psi=\left(\frac{i}{2} \Phi_{A}^{a} \frac{\partial}{\partial \beta^{a}}+U(\beta) \Phi \Phi \Phi\right) \Psi=0$

Space of solutions is a mixture of "discrete-spectrum states" and "continuous-spectrum states", depending on fermion number $N_{F}=$ $C_{F}-3$. \exists solutions for both even and odd N_{F}.
\exists continuous-spectrum states (parametrized by initial data comprising arbitrary functions) at $C_{F}=-1,0,+1$.

Completion of inconclusive studies started long ago: D'Eath 93, D'Eath-Hawking-Obregon 93, Csordas-Graham 95, Obregon 98, ...

Solution space of quantum susy Bianchi IX: $N_{F}=0$

Level $N_{F}=0: \exists$ unique "ground state" $|f\rangle=C f_{0}(\beta)|0\rangle_{-}$with

$$
f_{0}(\beta)=a b c\left[\left(b^{2}-a^{2}\right)\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)\right]^{3 / 8} e^{-\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)}|0\rangle_{-}
$$

This "ground state" is localized in the middle of β space (or of a Weyl chamber) and decays in all directions in β space: small volume, large volume, large anisotropies. It describes a quantum universe which oscillates in shape and size, but stays of Planckian size
\exists similar "discrete-spectrum" states at $N_{F}=1,2,4,5,6$; however, it is only at levels $N_{F}=0$ and 1 that these states decay in all directions and are square integrable at the symmetry walls.

Continuous-spectrum solutions at $N_{F}=2,3,4$: Quantum Supersymmetric Billiard

At $N_{F}=2, \exists$ solutions of the type $k_{(a b)}(\beta) \tilde{b}_{+}^{a} \tilde{b}_{-}^{b}|0\rangle_{-}$with a symmetric $k_{a b}(\beta)=f_{(a b)}^{+-}(\beta)$, with 6 components, that satisfies Maxwell-type equations in β space similar to $\delta k \sim 0, d k \sim 0$.

The spinorial wave function of the universe $\Psi\left(\beta^{a}\right)$ propagates within the (various) Weyl chamber(s) and "reflects" on the walls (= simple roots of $A E_{3}$). In the small-wavelength limit, the "reflection operators" define a spinorial extension of the Weyl group of $A E_{3}$ (Damour Hillmann 09) defined within some subspaces of $\operatorname{Spin}(8,4)$

$$
\widehat{\mathcal{R}}_{\alpha_{i}}=\exp \left(-i \frac{\pi}{2} \widehat{\varepsilon}_{\alpha_{i}} \widehat{J}_{\alpha_{i}}\right)
$$

with
$\widehat{J}_{\alpha_{i}}=\left\{\widehat{S}_{23}, \widehat{S}_{31}, \widehat{J}_{11}\right\}$ and $\widehat{\varepsilon}_{\alpha_{i}}^{2}=\mathrm{Id}$

Hidden Kac-Moody structure of the spinor reflection operators

Dynamically computed reflection operators:

$$
\begin{aligned}
\mathcal{R}_{\alpha_{23}}^{\mathbf{6}, N_{F}=2, W K B} & =e^{-\frac{i \pi}{2}} e^{ \pm \frac{i \pi}{2}\left|\widehat{S}_{23}\right|_{6, N_{F}}=2} \\
\mathcal{R}_{\alpha_{12}}^{6, N_{F}=2, W K B} & =e^{-\frac{i \pi}{2}} e^{ \pm \frac{i \pi}{2}\left|\widehat{S}_{12}\right|_{6, N_{F}=2}}, \\
\mathcal{R}_{\alpha_{11}}^{6, N_{F}=2} & =e^{-i \frac{\pi}{2}} e^{-i \frac{\pi}{2} \widehat{\mathcal{J}}_{11} \mathbf{6}, N_{F}=2}
\end{aligned}
$$

The \mathcal{R}_{α} 's satisfy generalized Coxeter relations characteristic of spin-extended Weyl groups (Ghatei, Horn, Köhl, Weiss, 2016)

$$
r_{i}^{8}=1
$$

$r_{i} r_{j} r_{i} \cdots=r_{j} r_{i} r_{j} \ldots$ "braid" relations with $m_{i j}$ factors on each side.

$$
r_{j}^{-1} r_{i}^{2} r_{j}=r_{i}^{2} r_{j}^{2 n_{i j}}
$$

with some (precisely defined) integers $m_{i j}$ and $n_{i j}$.

Fermions and their dominance near the singularity

Crucial issue of boundary condition near a big bang or big crunch or black hole singularity: DeWitt 67, Vilenkin 82 ..., Hartle-Hawking 83 ...,, Horowitz-Maldacena 03

Finding in Bianchi IX SUGRA: the WDW squared-mass term $\hat{\mu}^{2}$ is negative (i.e. tachyonic) in most of the Hilbert space (44 among 64).

$$
\begin{equation*}
\mu^{2}=\left(-\left.\frac{59}{8}\right|_{0} ^{1},-\left.3\right|_{1} ^{6},-\left.\frac{3}{8}\right|_{2} ^{15},+\left.\frac{1}{2}\right|_{3} ^{20},-\left.\frac{3}{8}\right|_{4} ^{15},-\left.3\right|_{5} ^{6},-\left.\frac{59}{8}\right|_{6} ^{1}\right) \tag{1}
\end{equation*}
$$

This is a quantum effect quartic in fermions:

$$
\rho_{4} \sim \psi^{4} \sim \mu^{2}\left(\mathcal{V}_{3}\right)^{-2}=\mu^{2}(a b c)^{-2}=\mu^{2} \bar{a}^{-6}
$$

which dominates the other contributions near a small volume singularity

Bouncing Universes and Quantum Boundary Conditions at a Spacelike Singularity ?

A "stiff", $\rho_{4}=p_{4}$, negative $\rho_{4}<0$ contribution classically leads to an avoidance of a singularity, i.e. a bounce of the universe. Quantum mechanically, the general solution of the WDW equation (in "hyperbolic polar coordinates" $\beta^{a}=$ $\rho \gamma^{a}$)

$$
\left(\frac{1}{\rho} \partial_{\rho}^{2} \rho-\frac{1}{\rho^{2}} \Delta_{\gamma}+\hat{\mu}^{2}\right) \Psi^{\prime}\left(\rho, \gamma^{a}\right)=0
$$

behaves, after a quantum-billiard mode-expansion $\Psi^{\prime}\left(\rho, \gamma^{a}\right)=$ $\sum_{n} R_{n}(\rho) Y_{n}\left(\gamma^{a}\right)$, as

$$
\rho R_{n}(\rho) \equiv u_{n}(\rho) \approx a_{n} e^{-|\mu| \rho}+b_{n} e^{+|\mu| \rho}, \text { as } \rho \rightarrow+\infty
$$

This suggests to impose the boundary condition $\Psi^{\prime} \sim e^{-|\mu| \rho} \rightarrow 0$ at the singularity, which is, for a black hole crunch, a type of "final-state" boundary condition (à la Horowitz-Maldacena), which would represent a quantum avoidance of the singularity?

Conclusions

- The BKL approach to the description of general spacelike cosmological singularities has been confirmed by many analytical and numerical studies, though a mathematical proof is still lacking (except for some nonchaotic cases).
- The BKL-type cosmological billiard dynamics is equivalent to billiard motion in the Weyl chamber of an hyperbolic Kac-Moody algebra ($A E_{3}$ for GR_{4}, E_{10} for SUGRA ${ }_{11}$).
- The evidence for a hidden Kac-Moody structure goes much beyond the billiard limit (both in bosonic and fermionic EOM and in classical/quantum effects). It suggests a gravity/coset correspondence: gravity dynamics \leftrightarrow massless particle on infinite-dimensional (Lorentzian-signature) Kac-Moody coset G/K.
- The case study of the quantum dynamics of a triaxially squashed 3 -sphere (Bianchi IX model) in (simple, $D=4$) supergravity confirms the hidden presence of hyperbolic Kac-Moody structures ($A E_{3}$ and $K\left(A E_{3}\right)$) in supergravity, especially in the fermionic sector.
- Quartic terms in the gravitino might lead to a quantum avoidance of the singularity.

