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Genericity of Cosmological Singularities?

Landau 1959: Is the big bang singularity of Friedmann universes a
generic property of general relativistic cosmologies, or is it an artefact
of the high degree of symmetry of these solutions?

v

Khalatnikov and Lifshitz 1963: look for generic inhomogeneous and
anisotropic solutions near a singularity

ds® = —adt? + (a2 6t + b? m; m; + c? n; nj)dx’ ax!

single homogeneous Friedmann scale factor a(t) — three inhomoge-
neous scale factors a(t, x), b(t,x), c(f,x)

v

KL63 did not succeed in finding the “general” solution of the compli-
cated, coupled dynamics of a, b, ¢ and tentatively concluded that a sin-
gularity is not generic.

v
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Genericity of Cosmological Singularities?

local collapse: Penrose 1965; cosmology: Hawking 1966-7, Hawking-
Penrose 1970: Theorems about genericity of cosmological “singularity”.
They prove generic “incompleteness” of spacetime, without giving any
information about the “singularity”.

Belinsky, Khalatnikov, Lifshitz 1969:

e intfroduce a new approach to construct the “general” solution near
abc — 0 of the coupled (inhomogeneous) dynamics of a(t,x), b(t,x),
C(t) X)s

e find that, at each point of space x, the dynamics of a, b, ¢ is chaotic.

The BKL conjecture has been confirmed both by numerical simula-
tions (Weaver-Isenberg-Berger 1998, Berger-Moncrief 1998, Berger et
al 1998-2001; Garfinkle 2002-2007; Berger’s Living Review) and by
analytical studies (Damour-Henneaux-Nicolai 2003; Uggla et al 2003-
2007; Damour-De Buyl 2008).
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BKL chaos near a big bang or a big crunch
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R
Dynamics of BKL a, b, c system

January 1968, at the Institut Henri Poincaré, Isaak Khalatnikov gives a seminar
in which he announces to the western world the results of BKL. He shows
the system of equations for the three local scale factors a, b, ¢ [with new time
variable dtv = —dt/(abc)]

a5, .5 4
ZW_(b —Cc)c—a
dzlnbi 2 2 4
2 — =(c?—a)P2-b
e _ , 20 4
zwf(a —b)c—c¢

J.A. Wheeler was in the audience and immediately pointed out the possibil-
ity of a mechanical analogy for this model. He informed his former student
Charles Misner (who was independently working on the Bianchi IX dynamics)
of the BKL results. In 1969 Misner published a mechanical-like, Lagrangian
analysis of the Bianchi IX (a, b, ¢) system under the catchy name of “mixmas-
ter universe”.
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R
Cosmological Billiards

(Misner 1969a, 1969b [quantum], Chitre 1972, . . ., Damour-Henneaux-Nicolai 2003, . . ., Belinski-Henneaux 2018)

ds? = —df? + (& 4; ¢ + b? m; m; + ¢ n; nj)dx’ dx/
exponential parametrisation: a=e P, b= e F*, c = ¢

Lagrangian ruling the dynamics of the (3’s at each spatial point
1 o
£ =5 Gap p%p° — V(B)

2
Kinetic metric G, p2p°% =5 ($2)? — <Z[3a> (DeWitt metric)

Potential V(B) = Y_cal...) e 2"al®)
a

<

Wall forms wa(B): e.g. gravitational walls: w'9) () = > Be+pBe—BP—BC

abc
e

v
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Billiard in (3 space: Toda-like exponential
potentials V(B) = > ca(...) e 2"(P)
a
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Einstein Billiards (chaotic versus non-chaotic)
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Chaotic billiard for D = 4 gravity (BKL, Misner, Chitre)

Ve |
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R
Non-chaotic Billiards

Asymptotically Kasner-like; amenable to Fuchsian analysis if one as-
sumes analyticity in space

D = 4 gravity + scalar field (Belinsky-Khalatnikov 73, Andersson-
Rendall 01)

D > 11 pure gravity (Demaret et al 85, Damour-Henneaux-Rendall-
Weaver 02)

D > 39 pure gravity, but without assuming analyticity: Rodnianski-
Speck 18 gives a mathematical proof for near-isotropic initial data.

v
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R
Kac-Moody algebras

Generalization of the well-known “triangular” structure of Ay = so(3) = su(2) = sl/(2) :
diagonalizable (Cartan) generator: J;, and raising/lowering generators: J+ = Jx £ iJ,
with [Jz, Ji] = +Jd4v; [oyd-l=—d_; Ui, J]1=2J;

V.

Rank r: r mutually commuting Cartan generators h; and r simple raising (e;) and low-
ering (f;) generators:

(hiy bl = O hi, e = Aj g5 [hi, 1 =—A;fi; e, fil =8 h

. 1—Aj 1—Aj
Serre relations: ad,, * 6;=0;ad, "' f;=0

N

Aj = Cartan matrix: A; = +2, Aj € —N

Roots: « = linear form on Cartan: h= Y B’ — «(h) = «;p’
7

g -

Eux ~[eyleyley, .. 1 a=mal" + ma® + ...+ nal”
2(0((/)) (X(j))
((X(,), o((’))
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-]
Dynkin Diagrams (= Cartan Matrix) of £,y and AE;

10
O—O0—""O0—""0O0O—"C0O0—""0O0—0—""0——=0
1 2 3 4 5 6 7 8 9

Figure: Dynkin diagram of Eqo with numbering of nodes.

2 -2 0
Cartan matrix of AE3: (Aj) = | -2 2 —1
o —1 2

oo o

[0 (4] X2
Dynkin diagram AE;
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Eio and AE; Root Diagrams:
each root « < a Lie-algebra generator E,
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Cosmological Singularities and Hyperbolic Kac-Moody Algebras:

Billiard Walls = Kac Moody Roots
potentials V(j ZCA ) e2wa(B) with wa(p) = «(p)

+ much deeper gravity/coset correspondence

Damour, Henneaux 2001; Damour, Henneaux, Julia, Nicolai 2001; Damour, Henneaux, Nicolai 2002

e . ®
PURE GraVITY ] R
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|
Bosonic EOM of SUGRA

D = 11 spacetime, zero-shift slicing (N = 0) time-independent spatial coframe 8%(x) =

E3(x)dx', i =1,...,10; a = 1,..., 10 choose time coordinate x° s.t. lapse N = VG
with G := det Gz

structure constants of frame: do? = 1C%.6° A 0°; frame derivative 9, = E',(x)d;;
3-form A; 4-form F = d A; 2GagT%: = Cabc + Cbea — Ceab + 05Gea + 3¢ Gap — 02Gpe

ds? = —N?(dx°)? + G,,0%0°

F = %}-Oabcdxo ANBENBPNO° + %}—abcdea A0° N0° N7

00(G*00Ges) = 5 GF™** Fogys — 75 GF " Fog 55 — 2GRY(1, O)

1
aO(G]_—Oabc) _ mﬁabam apagby b2b3b4]_—0a1 aas

+ gG]_-de[ab Cc]de o Gce de]_-dabc _ ad(G]:dabC)

Fbybababs

a0‘7'—<:-zbcd = 6]'—Or-z[abcecd] +4 a[a-FObcd]
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Gravity/Kac-Moody Coset Correspondence

Appearance of Eqq in the “near cosmological singularity limit” (where a
Belinski-Khalatnikov-Lifshitz chaotic behavior arises) suggests the
existence of a supergravity/E1g coset correspondence (Damour,
Henneaux, Nicolai '02)

[related suggestions: Eqg, Ganor 99 '04; E14 : West '01]

The ‘singularity’ is ‘resolved’ by the effective ‘disappearance’ of space,
and the replacement of dynamical fields, g;(t,x), Ajk(t,x),... by a Lie-
algebraic variable g(t) € E19(Z)\E10(R)/Kio(R)
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Basic Idea: two ‘dual’ descriptions

SUGRA / M=oy MASSLESs SPINNING  PARTICLE
>KAYy (or Mot r 5
ON  CoseT ’10/:’<CEID>

Gplt,E) N
‘A/N} C{:/;)

—>
G .
7T
Supergravity Description Coset Description
Gp.v(tvx))Ap.v?\(tvX))I\bu(t)X) g(t) S E10(Z)\E1O(R)/K1O(R)
in (T'° ?) compactified space
R < 052 R > 052

v
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Gravity/coset correspondence

(super)gravity «+» massless (spinning) particle on G/K J

g(t) € G/K; velocity v = 0,99 ' € Lie(G) is decomposed into v =
P + Q where Q € Lie(K) and P = v¥™ — %(v+ vT) € Lie(G) — Lie(K)

Coset Action for massless particle:

coset at 1
siost = | 225 3 (PO, P(D)

n(t) : coset lapse — constraint (P(t), P(t)) =0

v

For hyperbolic (or more generally Lorentzian) Kac-Moody algebras the
coset G/K is an infinite dimensional Lorentzian space of signature
—+4++++...

v
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-]
Evidence for gravity/coset correspondence

Damour, Henneaux, Nicolai 02; Damour, Kleinschmidt, Nicolai 06; de Buyl, Henneaux, Paulot 06; Kleinschmidt, Nicolai 06

Insert in S7OFT = [ dt{ 7 (P(1), P(1)) — 5(¥(t) | D™ ¥(t))ws + ... } the GL(10) level
expansion of the coset element

g(t) = exp(h3(t) K2)x
1
8l Aa1 a (¢ JE? % 4 91

Agreement (up to height 29) of EOM of g®(t) = (e")a(eM’, Aumc(t), Aa..a(1),
Azplar...as (1), and W**(f) with supergravity EOM (including lowest spatial gradients)
for Guv (8, x), Auva(t, x), Wy (£, x) with dictionary:

g®(t) = G®(t,x0),  Aanclt) = Foare(t, X0),
DA% (1) = — L e21-abr-bap o\ (1,%0),
DAb|a1...a8(t) _ 2631...agb1bgcg1b2(t’xo)

and Y (1) = G *a(t, xo)

x eXp[S' Aabe(t) Eabc + 5 Aaulap..aa(t) an\a1...a8 +.. ]

<

<4
Moreover, 3 roots in Eqo formally associated with the infinite towers of higher spatial
gradients of G, (t,x), Auva (£, X), Py (£, X)

A
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|
K(E;o) Structure of Gravitino Eq. of Motion

In the gauge ¥\'" = o2y, the equation of motion of the rescaled gravitino
Py = g4 " (neglecting cubic terms) reads

€2 = i 1Tyl jzw;g)rcdlb'(aw)
B %F[Scyrbcdwgm B %F[;LL)rbII)UO)c n %,_—gcyrabcwmmd
n %Fé;;;rorbcdewém) . g,_-;;;;rorbcdewém) 7 %Fé;;;rorabcdeﬂb“mf
+ Nl — @f)rorty e gwggc)rorbcdlbgm _ gwl()1;;r0rbcdlbé10)
+ Ng1/4rorb(26albéﬁ) . ablb(aﬂ) o %w((;;b)lbéﬁ) o w(()101a)11)211] + %Wégb)lb(aﬂ))

Apart from the last line, this is equivalent to the K(Ejo)-covariant equation

Vs

0 =DY(t) = (ar— Q(U)‘l’(ﬂ-

expressing the parallel propagation of the K(Eio) vector-spinor W(t) along the
Eio/K(E1o) worldline of the coset particle, with the K(E;o) connection
O(t) := 3(v(t) — v' (1)) € Lie(K(E)) , with v(t) = 9:99™ " € e10 = Lie(Eqo).
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A concrete case study (pamour, Spindel 2013, 2014, 2017)

persymmetric triaxially squashed three-sphere: with squashing parameters

e Quantum supersymmetric Bianchi IX, i.e. quantum dynamics of a su-
a=ebB, b=eb, c=e B

L © BIG BANG (or BIG CRUNCH)

®
time 0
-
<’

Susy Quantum Cosmology: Obregon et al > 1990; D’Eath, Hawking, Obregon,J

1993, D’Eath > 1993, Csordas, Graham 1995, Moniz > 94, ...
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R
Quantum susy Bianchi IX

Technically: Reduction to one, time-like, dimension of the action of
D = 4 simple supergravity for an SU(2)-homogeneous (Bianchi IX) cos-
mological model — (essentially) Susy Quantum Mechanical model

v

gw OxMdxY = —N?(t)df?
+ Gap(1)(T3(x) + NA(t)at) (t°(x) + NP(B)dt)

12 left-invariant one-forms on SU(2) ~ S3 : d12 = % Cg. ™ A 1¢; here
C{. = eapc plays the role of a nonabelian “gravitational flux”, or constant
momentum of (coset) dual graviton.

v
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Dynamical degrees of freedom

e 6 Dbosonic dof: Gauss-decomposition of the metric: g, =
Z§:1 e—2[33 Sab((p‘l) ©2, (PS) Sac((Ph ©2, (93)

pa = (B'(1),B2(t), (1)) cologarithms of the squashing parameters
a, b, c of 3-sphere a = e F'| b =ePB c = e ® and three
Euler angles: ¢, = (@1(t), @2(t), @3(t)) parametrizing the orthogonal
matrix S%

v

e and 12 fermionic dof: pravitino components in specific gauge-

fixed orthonormal frame 6% canonically associated with the Gauss-

decomposition 80 = N(t)dt, 62 = Y e P53, (@(t)) (TP (x)+NP(t)dt)
b

e redefinitions of the gravitino field:

WA(t) = g4 P4 and ®F:=Zgyip VY2 (nosummation on 3)

¢ 3 x 4 gravitino components ®4, a=1,2,3; A=1,2,3,4.
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Supersymmetric action (first order form)

. i . _ -
S:Jdt [na B2 + Py ¢>a+zGab(qu)ﬁJr‘l’éASA—NH—NaHa]

v

G_p: Lorentzian-signature quadratic form:

2
Gap dB2dp® =) (dp?)? — (Z drsa>

a

G_p defines the kinetic terms of the gravitino, as well as those of the
B¥s:

1 o
5 Gab B?°

v

Lagrange multipliers — Constraints Sy ~ 0, H~ 0, Hy ~ 0 J
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Quantization

e Bosonic dof:

~

T[a:

iy P, = —i
aﬁa? p(Pa a(pa

e Fermionic dof:

D3 D+ DL D3 = GP 5,5

v

This is the Clifford algebra Spin (8+,47) |

e The wave function of the universe ¥Y,(B24, @) is a 64-dimensional
spinor of Spin (8,4) and the gravitino operators @4 are 64 x 64 “gamma
matrices” actingon ¥, 0 =1,...,64

e Crucially depends on the terms cubic and quartic in Fermions )
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Dirac Quantization of the Constraints

o~

Sa¥=0, HY=0, H,¥=0 )

Diffeomorphism constraint & py, W = —i 53- ¥ = 0: “s wave” w.r.t. the
Euler angles

v

— Wave function ¥(B4) submitted to constraints

Sal7, B, ®)¥(B) =0, H(7,B,®)¥Y(B)=0

v

Mg = —ia—ga = 4 x 64 + 64 PDE’s for the 64 functions W, (p', B2, p°) J

Heavily overdetermined system of PDE’s J
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Explicit form of the SUSY constraints ,° =92,,, = ' - 62,32 = 3' - 3?)

1 - 1 —
Sy = 7§Zna®f‘+§zezﬁa(v5®a)A
a a
1 . N s~
— gCOthI312(S12(Y12®12)A+(Y12‘D12)AS12)

1 )
+  cyclic(yp3) + 5( Gl ‘é‘/cqublcf)

. . 1 =3 ars ~ =21 a25 ~
Sr®) = ZI® Y@ +3%)+ (@ o)
=2 A2p ~ =1 s25 ~
+ (0@ Y2 0%) — (0 YD), )
- 1 = G oA | & DG AT
Spte = 2> Wy U - o} (U ¥
a a,b
1 = 5 3 B
+ 8 Z(‘ljol ‘Yalljg)(‘ya‘yg +'Yb\y§)v
a,b
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N
(Open) Superalgebra satisfied by the Sy’s and H

P — 1~

8n8s+ 858 =413 L5p(P) S0+ 5 b J
(o

[§A)H]=ME§B+I/\\IAI/:I J
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Root diagram of AE; = A; "
3-dimensional Lorentzian-signature space: metric in Cartan sub-algebra

2
Gap dB?dp® =) (dp?)? - <Z dﬁa>

a

(directly linked to Einstein action: K — (K/)?)

WE)’L CHAMBER

TIHE-LikE
ROOTS

NOLL
ROOTS

o
;>‘ REAL ROOTS
.

«*=+2
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Kac-Moody Structures Hidden in the Quantum Hamiltonian

2H = G®(Ra+ i Aa)(Tip + i Ap) + T2 + WE(B) + WP™(B) + WBR(B) .

v

Gap — metric in Cartan subalgebra of AE3

]
We™(B) = 5 e 2o%1(B) _ g729%3(P) 1 cyclicy pg

WP (B, @) = &1 B J14 (D) + 6% P (D) + %) Jgs (D).

Linear forms o, (B) = B2+ BP & six level-1 roots of AE;

1 (Si2(@))2 1
2 sinh? o35 (B)

Linear forms oj5" () = B! — B2, 03" (B) = B2 — B°, o3y (B) = p° — B!
& three level-0 roots of AE;

VVSSBI,:’III?(B) — T CycliC123 y
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Spin dependent (Clifford) Operators coupled to
AE; roots

Sio(®) = S[@3Y2(D' + B2) + (21102 DY)

Ji1(®) =

v

° 312, §23, §31, 311, 322, 333 generate (via commutators) a 64-
dimensional representation of the (infinite-dimensional) “maximally
compact” sub-algebra K(AE3) C AEs. [The fixed set of the (linear)
Chevalley involution, w(e;) = —f;, w(f;) = —e;, w(h;) = —h;, which is
generated by x; = ¢; — f;.]

v
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The “squared-mass” Quartic Operator {i2 in H

In the middle of the Weyl chamber (far from all the hyperplanes «;(3) = 0):
2H~R2 4 it

where 1i2 ~ 5~ ®* gathers many complicated quartic-in-fermions terms (includ-
ing >~ S2, and the infamous * terms of supergravity).

v

Remarkable Kac-Moody-related facts:
e 12 commutes with the K(AEz) generators §ab,jab

e {1 is ~ the square of a very simple operator € Center

= 7=
W= gC%

1]
2

where Cr := § Gap ©2y'% 0P,
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Solutions of SUSY constraints

Overdetermined system of four 64-component Dirac-like equations

Spw = (5’ ®F o2 + U(B)@@@)W —0

Space of solutions is a mixture of “discrete-spectrum states” and
“continuous-spectrum states”, depending on fermion number N =
Cr — 3. 3 solutions for both even and odd NE.

v

3 continuous-spectrum states (parametrized by initial data comprising
arbitrary functions) at Cr = —1,0, +1.

v

Completion of inconclusive studies started long ago: D’Eath 93,
D’Eath-Hawking-Obregon 93, Csordas-Graham 95, Obregon 98, ...
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Solution space of quantum susy Bianchi IX: Nc =0

Level Nr = 0: 3 unique “ground state” |[f) = C () |0)_ with

0(B) = abe [(£? — &)(c? — bP)(c - az)r/8 e H(#HP+?) gy

This “ground state” is localized in the middle of § space (or of a Weyl
chamber) and decays in all directions in 3 space: small volume, large
volume, large anisotropies. It describes a quantum universe which os-
cillates in shape and size, but stays of Planckian size

v

3 similar “discrete-spectrum” states at Nr = 1,2,4,5, 6; however, it is
only at levels Nr = 0 and 1 that these states decay in all directions and
are square integrable at the symmetry walls.

v

Thibault Damour (IHES) Khalat100 17-20 October 2019 34/39



Continuous-spectrum solutions at N = 2, 3, 4:
Quantum Supersymmetric Billiard

At Ne = 2, 3 solutions of the type k) (B) b2 b? |0)_ with a symmetric
kap(B) = f(gg)([s), with 6 components, that satisfies Maxwell-type equa-
tions in 3 space similar to 6k ~ 0, dk ~ 0.

v

The spinorial wave function of the universe Y(32) propagates within the
(various) Weyl chamber(s) and “reflects” on the walls (= simple roots
of AE3). In the small-wavelength limit, the “reflection operators” define
a spinorial extension of the Weyl group of AEz (Damour Hillmann 09)
defined within some subspaces of Spin(8, 4)

Ry = exp (~1 380,

Xvith L
Jo, ={S23, S31,J11}and €2 =1d

v
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Hidden Kac-Moody structure of the spinor
reflection operators

Dynamically computed reflection operators:
RONF=2WKB  _  o='5 oF7(Seslenp—2

N ) ) A
RONe-2WKE  _ e—%e:t%\gm\sw,_-:z) ‘
; i 6,Ng=2
RONe2 it grigdnt

The R,’s satisfy generalized Coxeter relations characteristic of ¥
spin-extended Weyl groups ( Ghatei, Horn, Kéhl, Weiss, 2016)

8 =1,
rifr - - - = rjrir; - - - “braid"relations with mj; factors on each side .
1,2, _ 22N
o rihp =1t =

with some (precisely defined) integers mj; and n;.
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Fermions and their dominance near the singularity

Crucial issue of boundary condition near a big bang or big crunch or
black hole singularity: DeWitt 67, Vilenkin 82 ..., Hartle-Hawking 83 ...,
...., Horowitz-Maldacena 03

v

Finding in Bianchi IX SUGRA: the WDW squared-mass term i is neg-
ative (i.e. tachyonic) in most of the Hilbert space (44 among 64).

2_ [ _99 ! 1
u(s 6) (1)

This is a quantum effect quartic in fermions:
which dominates the other contributions near a small volume singularity
Thibault Damour (IHES) Khalat100 17-20 October 2019 37/39
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pa ~*~ 12 (V3) 2 =p2(abc) ? = p2a®




Bouncing Universes and Quantum Boundary
Conditions at a Spacelike Singularity ?

A “stiff”, ps = pa4, negative p4 < 0 contribution classically leads to an avoidance
of a singularity, i.e. a bounce of the universe. Quantum mechanically, the
general solution of the WDW equation (in “hyperbolic polar coordinates” 32 =
2% 1 1

(pai o= Ay + ﬁz) Y (p,y?) =0

behaves, after a quantum-billiard mode-expansion W¥’'(p,v?) =
> o Bn(p) Ya(y?), as

0 Rn(p) = un(p) =~ ane ™ + bre™™P | asp — +oo

v

This suggests to impose the boundary condition ¥’ ~ e~ I*le — 0 at the singu-
larity, which is, for a black hole crunch, a type of “final-state” boundary condi-
tion (a la Horowitz-Maldacena), which would represent a quantum avoidance
of the singularity ?

v
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Conclusions

e The BKL approach to the description of general spacelike cosmological
singularities has been confirmed by many analytical and numerical studies,
though a mathematical proof is still lacking (except for some nonchaotic cases).

e The BKL-type cosmological billiard dynamics is equivalent to billiard motion in
the Weyl chamber of an hyperbolic Kac-Moody algebra (AE; for GR4, Ejo for
SUGRA14).

e The evidence for a hidden Kac-Moody structure goes much beyond the billiard
limit (both in bosonic and fermionic EOM and in classical/quantum effects). It
suggests a gravity/coset correspondence: gravity dynamics < massless particle
on infinite-dimensional (Lorentzian-signature) Kac-Moody coset G/K.

e The case study of the quantum dynamics of a triaxially squashed 3-sphere
(Bianchi IX model) in (simple, D = 4) supergravity confirms the hidden presence
of hyperbolic Kac-Moody structures (AE; and K(AEz)) in supergravity, especially
in the fermionic sector.

e Quartic terms in the gravitino might lead to a quantum avoidance of the
singularity.
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