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Outline of the talk

1. Motivation from experimental data: “anomalous metal” behavior near SMT
and the issue of para-conductivity at very low T

2. Theoretical model: 2D metal with potential disorder and spatial fluctuations
of the Cooper attraction constant A(r)

3. Anderson localization of superconducting modes: emergent SC grains

4. Interaction between emergent grains: strong-disorder RG

5. Strange metal as a Griffiths phase: large T-independent conductivity



Classical results (since 1980's)
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No metal state in 2D due to Anderson localization:
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However, experimental data of quite EJE >1
different kind were collected in 15
quite a large amount
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Quite a number of various data for large, but
T-independent conductivity at lowest temperatures

With magnetic field and without magnetic field



Few examples:
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FIG. 8. Resistivity as a function of T for TaN, and InO, films.
The left-hand panels show the superconducting transition in
resistance vs 7 for H = (. The right-hand panels show the
resistance on a logarithmic scale as a function of 1/T for various
values of the applied magnetic field. From Breznay and Kapi-
tulnik, 2017.
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FIG. 9. Arrhenius plot of the sheet resistance of an electric
double layer transistor of ZrINCI at gate voltage V; = 6.5 V for
different magnetic fields perpendicular to the surface. The black
dashed lines demonstrate the activated behavior with activation
energy U(H) o In(H,/H), similar to Ephron ef al. (1996). The
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FIG. 11. The resistance vs T on a log-log scale of an ordered
amray of Sn disks on a graphene substrate; the density of electrons
in the graphene is controlled by adjusting the voltage with a back
gate. For the largest gate voltages (highest electron densities)
there is a clear finite temperature transition to a superconducting
state. However, for a broad range of lower gate voltages, we see
the familiar several orders of magnimde drop in the resistance that
terminates in a temperature independent plateau. From Han ef al.,
2014.
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FIG. 12. Log of the sheet resistance R, as a function of the
inverse temperature 7' in a gated InAs heterostructure with
epitaxial Al patterned to form a regular array of superconducting
islands. Data are shown for a range of gate voltages Vg from —3.0
to —3.9 V. The dashed curve comesponds o V; = =3.73 V: the
tendency of the curves with V; = —3.73 V to saturate at low T
is indicative of the occurrence of a metallic phase. From Bettcher
et al, 2018.
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What is known on the theory side ?

Standard scaling scenario for SMT at T=0

T. Kirkpatrick, D. Belitz (1997)

Metal-superconductor transition at 7' = 0: a case of unusual scaling

el g O

I (w,q) =1+ 1]

Inl/(q% —iw)

Gaussian fixed point is stable (phase volume of fluctuation modes is tiny)

no noticeable fluctuation effects

No conductivity enhancement near SMT

Can this scenario be broken?



2. Theoretical model:

frozen disorder in the Cooper constant



Cooper constant inhomogeneity
e Appears in any scenario of SM transition at 7'=20

e (Generates effective depairing in the superconducting phase
Larkin, Ovchinnikov (1972)

(D/2)V?0 +iEsinf + Acosf — An cosfsinf = 0
Feigel'man, Skvortsov (2012)
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e What are its effects in the M phase?



Coulomb suppression of T,

Critical temperature
| 7= )“’ : Finkelstein

I
1 i : - e T
— = —tanh(\() ——> 7= ( I - (1987)

Dol Ag T

Ovchinnikov (1973) (wrong sign)
Maekawa, Fukuyama (1982)
Takaqi, Kuroda (1982)

. _ 1 2 1
F ge = B In Toor
lfy.
«= Clean dirty =+ 1/g. ;
Conclusion:

At In(1/T,1) >5 =m Superconductor - Metal
g. >4 ie. R <R, | Quantum phase transition



Mesoscopic vs. thermal fluctuations

T Concentration of SC islands: P ~ exp {_T:S_Z”Tﬂ
’TLI d4e .
0 o Skvortsov,Feigelman
4= —— Phys.Rev.Lett. 2005
9(9 — gc)

Broadening of the transition
due to mesoscopic fluctuations

Thermal fluctuations

g

strongly

Linhomogeneous

1l

' | 1/gc
g—9gc~1 y—gc“«;

Major conclusion: near SMT emergent granularity is a strong effect



Suppression of Cooper pairing

Consider superconducting propagator £ on top of metallic state

electrons are integrated out (gaussian approximation )

dw
S :/g/drldrgAw(rl)a(w,rl —1r3)A,(r2)
(0,q) = — de——" qu(€) C fact
(0, q IV qu2 5 |€|1\Uq(€)‘\ ooperon suppression factor

due to fluctuating electric field

Cq
w_ obeys RG equation wy(e) =1 — )\3/ d¢y min (¢, 1 )wq(C1)
0

wq(e) = wy((), with ¢ = In(1/e7).
with )\3 = 1/27Tg and Cq — _9 ln(ql) ql q ) /

. wq(C < Gq) = cosh(AyC) — tanh(Ay(,) sinh(AgC)
Its solution is 1
we(C = () =

v cosh(Ag(q)




Randomness of the Cooper pairing

Sy —/;i—w[drldrgAw(rl)oz(w,rl —1r9)AL(rs).
T

a(0,q) = L - L 42 :

In presence of disorder and | A Ag  Agl+ (ql)_‘“‘g
non-zero frequency:

) 2
a(w,q;T) = ; [00 + u(r) + Cg(w)] Cy(w) = 2[(gl)? + 2wr] ™

g
Ag B
5[! — <}L...1:':I":|> 1 u(r)u(r’) _ Af(|r|/b)
! ! - }"Q‘ !
(8 +u(r)) L(w;r,v')+ | d°r1C(w;r —ry)L(w;ry,r’) = ?5(11 — 1)

r)iy (r')
L-w(r_r'r): .,_.:_.-._'I'r __ZE _I_(EDI_-EIO




Superconducting propagator

(r)y (x')
E,+ 6 —i0’

L,(r—r1')=L(w,r,1 :—Z

The spectrum F,, depends on disorder u(r)u(r’) = Af(|r|/b)

dg = <;‘igﬂ> —1 without disorder © =0, 0, =0

Clean DOS  v(E) o« E71TY/ 2N Q(E)
Very small DoS at low E and small kg

Weak disorder spectral edge shifts to negative E (shift of §.)

Randomness in )\ enhances SC!

No localized Lifshits tails at small disorder



Similar problem treated earlier

Key features: long-range, non-random hopping

Malyshev, Malyshev, Dominguez-Adame (2004)
Rodriguez, Malyshev, Sierra et al (2003)
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n=1 m.n=1
€(q) ~q*  a=p-d
€, from fox dist. of width W

Under the conditon 0 < a <d/2  weak disorder is irrelevant
near the band edge

localization transition at the band bottom as a function of disorder

Transition happens at d < pu < 3d/2



3. Anderson localization near the band edge:
emergent superconducting islands



Randomness of the Cooper pairing

Sy —/;i—w[drldrgAw(rl)oz(w,rl —1r9)AL(rs).
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a(0,q) = L - L 42 :

In presence of disorder and | A Ag  Agl+ (ql)_‘“‘g
non-zero frequency:
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Superconducting propagator: DoS

Ag = 0.2 and several values of disorder.

Dashed lines: self-consistent Born appr.

SCBA: v(e) = 1 Im¥(e + o(e))

1 d?
ole) = w’E(e+ o(e)), X(e) = 4W2/—E —|—q{7

DoS inthe tail: Inv(e) = Cy(w)e — Cy(w)




Superconducting propagator: —
eigenfunctions '
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FIG. 2: Inverse participation ratio P» at A; = 0.2 and w = 0.3
(compare with Fig. 1), for several energies € (see the legend).
At larger energy, the eigenstates are delocalized and in the
tail they are localized.




Localized emergent superconducting islands:
breakdown of the T=0 scaling theory for SMT

A spatial length scale comes in
as island's localization length



Localized SC islands
Ai(r,t) = a;(t);(r)

Y;(r): normalized eigenmode with energy Fj;, localized on the scale L;

S = i/dt [L’Iilﬂili - %Iuild‘] - HZF}L&’HM(WHE

x Quadratic action (diagonalized)

~ Nonlinear GL action

In(e(w) — €(0))

Fy(A) = [T d*riA(r) A% (r2) A(rs) A* (ra) B({ri})

B4({Tz}) — %TZG H%:l |6|—|—%D1(—?:8k)2 X
§(ry — 19)6(r1 — 13)8(r1 — 74) X [|e| +1p ([—ial 4 idy)% 4 [—ids + @34]2)}



Localized SC islands: dynamics
Ai(r, t) = ai(t)wi(r)

Y;(r): normalized eigenmode with energy Fj;, localized on the scale L;

S = )\ig[dt [ﬂiilﬂilg + %lﬂ‘ilil T l’rzl]-_'i|w||ﬂfi(w]|2

oy = F; +0
reo T B; ~ L2/ D? Iy ~ L2/D

\ )

A
— g _ 1 Y
’ <}‘*(T)> diverge at T" — 0 without disorder in A

In the unstable domain, a; < O: |azz~|2 = —qa;/B; ~ |ai|D2/Lz2

0

At || > 1/g only phase degrees of freedom survive, S = ). Sy[¢pi(?)]

—r

i

. 2ot ) — (¢t G; = Q(Ei "‘@:}] >> 1]
S| Gi / dt 1y 2 [(¢(t1) vgfﬂ)/’?] X

pt)] =55 (t — 1)

Andreev conductance

Correlation time t; = D-vfl exp(Gi/2) Wi~ wp = 'D;’_LE

loe




Localized SC islands: o
distribution of relaxation rates "

Inw(e)

Y= 1f{t?’ Relaxation rate T —u]lsa -—Ifl:u'.él 04 —02 00 02
i :
t; ~ w; " exp(Gi/2) GFQ(EiMa}E Inv(e) = Cy (w)e — Cy(w).
Andreev conductance
~ \ To . '8
y dry 201 (w)
Po(y)dy=po | —) —, m=—"-——-1 7
W (Jp cg

==) Average correlation time (1/7) is finite

but its dispersion diverges

Power-law distribution is indicative for possible Griffiths phase



4. Interaction between phases of different islands
and strong-disorder renormalization group



Interaction of the modes
S = i/dt [maﬁ n %mfﬁ] n uzwzl_‘ﬂw”ai(w)ﬁ

Other contributions of non-linear part of GL

@ localized mode ® delocalized mode

L )
Y

Interaction between localized modes via propagator of delocalized modes

= - Jo = (22 1
b0+ (QU)e o <A*(T)> B



Interaction of localized modes

A
do + (QI)™s

Fourrier — space interaction J({}) =

Localized islands with pair interaction in the real space

A A (r/)*Ps _3

Jfr]l ~ o ?12[1 n tl;ﬂ(_r.f;”-i,hﬂjz

xr © where 0<f3—-2<1

Islands are distributed at random over the plane,
thus J =J(r ) fluctuate strongly

Single-island relaxation rates also fluctuate
strongly between the islands:

Py (~)dvy = po (i)m dy Strong-disorder RG

wo wo '



Strong-disorder RG approach

Initially developed for disordered quantum Ising chain in transverse field

D. S. Fisher, Physical Review Letters 69, 534 (1992).
D. S. Fisher, Physical Review B 51, 6411 (1995).

Recent reviews: F. Igloi and C. Monthus, Physics Reports 412, 277
(2005).
F. Igloi and C. Monthus, Eur. Phys. J. B 91, 290 (2014).
G. Refael and E. Altman, Comptes Rendus Physique 14,
725 (2013).

Most relevant previous publication:

R. Juhasz, I. A. Kovacs, and F. Igloi, Europhysics Letters
107, 47008 (2014).



Strong-disorder RG approach: major idea

O\ joint two-island decay rate ~v,m
/J \“\\
Tn ' @ becomes much smaller than the individual rates +,, and ,,:
j I
‘ ¥l Ft
, | | fn’fm ¢ :
Tm @ Yrm = for min(In(~y,), In(vm)) < In(Tnm)
/ J nim
\\\ //‘/
N4

Multiplicative renormalization is the key starting point of SDRG

lowest-frequency Andreev conductance of the two-island system &,,, = G, + G,,

SDRG is the method to exclude (step by step) strongest interaction
terms in the Hamiltonian, and keep track of the statistics of remaining
lower-energy terms

Minimal energy scale of this RG is Q =T> 0)



R. Juhasz, I. A. Kovacs, and F. Igloi, Europhysics Letters
107, 47008 (2014).

J(r) ocrP
Strong-disorder RG equations
zn = (2/8)In(Q/7n) y = (Q/J)*°F -1
- Convenlent representatlon of the energy variables
= (2/5)In(2 /) Q2 is the current

upper energy scale
“RG time” evolution variable

Tnm = TIn T Tm Anzats P(z,7) =p(r)e ?7)*
‘ for the —q(7T)y
B — e e L LT = T
SDES Q(y.7) =q(7)e
dp These two equations are
PR formally equivalent to the
dg N Berezinsky-Kosterlitz-Thouless
ar ~ PraTA RG for 2D XY model




Strong-disorder RG: the solution

dp 1%integral:  q(7) — p(7) + In(p()) = Const
d —1 (1)« 1
ﬁZ—P"Hq p(r) = 1+&(7)
_ _ near the critical point
Single RG equation:

P(a,r) = p(r)e )"

€ __& +6 '
Q(y, T} _ q(T)E—q(T) Uy dr = B At small o > 0
( ; p(T) =1+ V28 coth (\/g(*r - T.,.))
q(7)] " Q,
4 p 5
21 q(T) =
sinh? (\/é[r + T+})
1 Line of fixed points -
Griffiths metal phase Ls = Loe®v/s

)

Largest strongly coupled clusters




Strong-disorder RG: solution
for the superconducting state

At negative values of 4, the RG equation has qual itatively different solution

£(1) = /2|6] tan (ﬁ@ﬁ - 'r_]) This solution describes
) strongly inhomogeneous

singularity at 7+ 71— = 7/1/2[3]. sgperconductlng State
with a small energy gap

8

As(0) = Qpe 2V




5. Low-T conductivity of the
Griffiths phase: “strange metal”

SDRG evolution stops at the lowest energy scale ~ T
The resulting distribution functions are:

P(y:T)dy = 2T (2) 2L 1 dy where (v,J) < T
o 1 dy
B>2 gl B \T T
2 Large fractal
gl o f4 )" \2/8 T clusters of SC
(J : e it LY BE qrT {j’

Close to the critical point pr =~ 1 4 1f25. and gr < 1

the average correlation time (1/v) = fﬂ T)d~/~ will diverge, at some small § > 0

Thermal contribution to the relaxation rate should be added:
_— <« Effective
G _h Andreev
— ) (1
Y =Y 27T/ Ga = ty = 0T conductance




Typical size of largest clusters

e N

// \\\ L
: \ Ls=Lpex
N Py / Number of islands

A% ) L )

N e within cluster of size L
] n(L) ~ log®(L)

- » R. Juhasz, I. A. Kovacs, and F. Igloi,

EPL 107, 47008 (2014)

Number of islands in largest clusters n, ~ 1/9

Effective Andreev conductance of largest clusters
e G.~G n ~1/0
(in units of 4e%h) 5 03



Aslamazov-Larkin paraconductivity
near T=0 In 2D system

No T-dependence

Divergence upon
approach to SMT
at 0— 0

Typical energy of
superconducting
fluctuations

Longest correlation time

t(M~ h G,/T



Conclusions

. Usual scaling theory of the qguantum SMT breaks
down when spatial disorder in the Cooper
coupling A (r) exceeds some critical magnitude

. Proximity coupling between spontaneously
formed SC islands can be described by
Strong-Disorder RG

. “Strange metal” phase in the vicinity of the SMT can
be represented as a line of the SDRG fixed points

. Conductivity of this “strange metal” is
T — independent but diverges upon approach
to the critical point of SM transition
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