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Layout:

I e+e− pair production in collision of ultra-relativistic
nuclei, Coulomb and unitarity corrections

I Spin �ltering in storage rings.

I Polarization e�ects in non-relativistic e+p̄ scattering.

I Quasiclassical approximation for the amplitudes of
basic processes in the �eld of heavy nuclei at high
energies



ZAZB → ZAZB e
+e− in the Born approximation

L.D. Landau, E.M. Lifshitz (1934), G. Racah (1937):

σBorn =
28

27π

ζ

m2
e

[
L3 − 2.198L2 + 3.821L− 1.636

]
,

ζ = (ZAα)2(ZBα)2 , L = ln(γAγB) ,

α = 1/137, ZA,B are the charge numbers of the nuclei A
and B and γA,B are their Lorentz factors.



ZAZB → ZAZB e
+e−, Coulomb corrections

Experimental results of SPS at CERN (γA = 100, γB = 1):
there are no Coulomb corrections though ZAα, ZBα ∼ 1 !

B.Segev, J.C.Wells(1998);
A.J.Baltz, L.McLerran (1998);
U.Eichmann, J.Reinhardt, S.Schramm, W.Greiner (1999):
The exact in ZA,Bα cross section coincides with that
calculated in the Born approximation! Contradiction with
the Weizs�acker-Williams approximation.



D.Yu.Ivanov, A.Schiller, and V.G. Serbo (1999),
R.N. Lee and A.I. Milstein (2000,2001):

σC = − 28

9π

ζ

m2
e

L2 [f(ZAα) + f(ZBα)] ,

σCC =
56

9π

ζ

m2
e

Lf(ZAα)f(ZBα) ,

f(x) = Reψ(1 + ix) + C = x2

∞∑
n=1

1

n(n+ x2)
.

Agreement of σC with the Weizs�acker-Williams
approximation.



ZAZB → ZAZB e
+e−, unitarity corrections

R.N. Lee, A.I. Milstein, V.G. Serbo (2002)

σunit = −2.66ζ2L2

m2
e

for ZAα, ZBα� 1 , ζL . 1



Explanation of the paradox [R.N.Lee, A.I.Milstein (2000)].

The cross section is proportional to J ,

J =

∫
q2
⊥|F |2dΩ , F =

ip

2π

∫
d2ρ e−iq⊥ρ

(
1− e−iχ(ρ)

)
,

J =

∫
d2q⊥
(2π)2

∫∫
d2ρd2ρ′ eiq⊥(ρ′−ρ) e−i(χ(ρ)−χ(ρ′))∇ρχ(ρ)∇ρ′χ(ρ′) .

JB =

∫
d2ρ [∇ρχ(ρ)]2 , χ(ρ) =

∫ +∞

−∞
V (ρ, z) dz

If we change the order of integration and use the relation∫
d2q exp[iq⊥(ρ− ρ′)] = (2π)2δ(ρ− ρ′),

we come to the wrong conclusion that J = JB!



In fact

R = J −JB = −8π(Zα)2f(Zα) , f(x) = Reψ(1 + ix) +C .

This result is independent of screening radius though
|F |2 = |FB|2 for q⊥ � r−1

scr , where rscr is the screening
radius!
R appears in:

I The Coulomb corrections to the cross section of e+e−

pair production in ultrarelativistic heavy-ion collisions;

I The Coulomb corrections in the Moli�ere's formula for
multiple scattering ;

I The Coulomb corrections to the spectrum of
bremsstrahlung (though the Coulomb corrections to
the di�erential cross section of bremsstrahlung are very
sensitive to screening!).



It is not legal to change the order of integration over q⊥
and ρ !
If one restrict the region of integration over q⊥ by the
condition q⊥ < Q, then

R = lim
Q→∞

Q

2π

∫ ∫
dρdρ′

J1(Q|ρ− ρ′|)
|ρ− ρ′|

× {exp[iχ(ρ)− iχ(ρ′)]− 1}∇ρχ(ρ)∇ρ′χ(ρ′) .

After the substitution ρ→ ρ/Q we can pass to the limit
Q→∞ in the integrand using the asymptotics
V (r)→ −Zα/r and χ(ρ)→ 2Zα(ln ρ+ const) at r → 0.
Then we obtain the �nal universal result!



What to do with the experimental results?!
Explanation: contribution of next-to-leading logarithmic
correction to the Coulomb corrections (∝ L = ln(γAγB)),
R.N.Lee, A.I.Milstein (2009):

σCA = − 28

9π

ζ

m2
e

f(ZAα)
{
L2 +

[
G(ZAα) +

20

21

]
L
}

G(ZAα) = 2

∫ ∞
2me

dω

ω

[
σCγA(ω)

σCγA(∞)
− 1

]
.

The quantity σCγA(ω) is the Coulomb corrections to the
cross section of e+e− pair production by real photon in the
Coulomb �eld, and

σCγA(∞) = −28α(ZAα)2

9m2
e

f(ZAα)



The function G(Zα) is huge! At m/ω � 1 the correction
δσCγA(ω) over m/ω � 1 reads [R.N.Lee, A.I.Milstein,
V.M.Strakhovenko (2004)]:

δσCγA(ω) = −28α(ZAα)2

9m2
e

[
π4

2
Im g(Zα) + 4π(Zα)3f1(Zα)

]
me

ω
,

g(Zα) = Zα
Γ(1− iZα)Γ(1/2 + iZα)

Γ(1 + iZα)Γ(1/2− iZα)
.

The function f1(Zα) . 1 is related to the total cross
section σbf of the so-called bound-free pair production
when an electron is produced in a bound state,

σbf (Zα) =
4πα (Zα)5

m2
e

f1(Zα)
m

ω
,



As a result we have almost total numerical cancellation
between the term ∝ L2 and ∝ L in the Coulomb
corrections.
So, the agreement between a few theories does not
guarantee the correct result!
The agreement between theory and experiment does not
guarantee the correct physical conclusions!



Spin �ltering in storage rings
Task: to obtain polarized antiproton beam.
We have the usual equation

d

dt

∫
drΨ+

k (r)OHΨk(r) = i

∫
drΨ+

k (r)[H,OH ]Ψk(r) ,

Ψk(r) =
1√
V
e−λr ψk(r) , Hψk(r) = Eψk(r) , OH = eiHtOe−iHt ,

where H is the Hamiltonian of the system

d

dt

∫
drΨ+

k (r)OHΨk(r)

= iN

∫
dr ψ+

k (r)
{

[e−λr, H]OHe−λr + e−λrOH [e−λr, H]
}
ψk(r) ,

where N = 1/V is the density. Since [e−λr, H] ∝ λ, only
contribution of large distances compensate small λ !



At large distances

ψk(r) =

[
eik·r +

eikr

r
F

]
χ1χ2 ,

where k is the initial momentum, χ1,2 are the spin wave
functions, F depends on n0 = k/k, n = r/r, and the spin
operators. Finally, we obtain the kinetic equation
[L.C.Balling, R.J.Hanson, and F.M.Pipkin (1964);
V.G.Baryshevsky, A.G.Shekhtman (1996); N.N.Nikolaev,
F.F.Pavlov (2006); A.I.Milstein, S.G.Salnikov (2013)]:

d

dt
〈O〉=vN Sp

{
ρ(t)

[∫
dΩnF

+OF− 2πi

k

(
F+(0)O −OF (0)

)]}
.

Here v = k/M , dΩn is the di�erential of the solid angle
corresponding to vector n, F (0) is F at n = n0, and ρ(t) is
the density matrix, the trace is taken over the spin indexes.



If the target polarization vector PT is parallel or
perpendicular to the antiproton beam axis ν, then kinetic
of polarization becomes essentially simpler [A.I.Milstein,
V.M.Strakhovenko (2005); N.N.Nikolaev, F.F.Pavlov
(2006)]. In these cases antiproton beam polarization vector
PB ‖ PT .
The cross section σ of pp interaction reads

σ = σel(pp→ pp) + σcex(pp→ nn) + σann(pp→ mesons).

All cross sections are summed up over �nal spin states,
σel includes pure Coulomb cross section, hadronic cross
section, and interference term, which can't be omitted.
Noticeable polarization can be obtained only if some
antiprotons are dropped out of the beam!



Spin-dependent cross section can be written in the form

σ = σ0 + (ζ1 · ζ2)σ1 + (ζ1 · ν)(ζ2 · ν)(σ2 − σ1), (1)

where ζ1,2 are unit vectors collinear to the particles spins.
For the antiproton beam polarization PB(t) and the
number of particles in the beam N(t), we have

PB(t) = tanh

[
t

2

(
Ωout
− − Ωout

+

)]
,

N(t) =
1

2
N(0)

[
exp

(
−Ωout

+ t
)

+ exp
(
−Ωout

− t
)]
,

Ωout
± = nf

{
σ0 ± PT

[
σ1 + (ζT · ν)2 (σ2 − σ1)

]}
,

where ζT = PT/PT , n is the areal density of the target and
f is the beam revolving frequency.



First attempt of the PAX (Polarized Antiproton
eXperiment) collaboration:
E�ect of C.J.Horowitz and H.O.Meyer (1994).
This e�ect was based on the wrong description of the
interaction of stored antiprotons with a polarized target
[A.I.Milstein, V.M.Strakhovenko (2005)].
The project was closed.
To predict σ1,2, it is possible to use optical potentials

VNN = UNN − iWNN ,

where WNN describes annihilation into mesons. There are
too many potentials with di�erent predictions! Another
possibility is to measure σ1,2. It is not done till now. So,
now it is not clear whether it is possible to use �ltering!



Polarization e�ects in non-relativistic e+p

scattering
Second attempt of the PAX collaboration:
E�ect of H.Arenh�ovel and Th.Walcher (2007).
This e�ect was based on the wrong description of the
interaction of stored antiprotons with a polarized positron
beam at low relative velocity.

[A.I.Milstein, S.G.Salnikov, V.M.Strakhovenko (2008)].
The project was closed.
Brilliant idea to use huge ampli�cation of the cross section
by a factor C2(ξ), where the famous SGS factor C(ξ) for
e−p or e+p̄ interaction reads:

C(ξ) =
2πξ

1− exp(−2πξ)
, ξ = α/v ,

where v is the relative velocity.



H.Arenh�ovel and Th.Walcher estimated the radial integrals
numerically. They concluded that antiprotons can be easily
polarized!
The polarization degree of the antiproton beam , P (t) , is

P (t) = PeP0

(
1− e−Ωt

)
, P0 =

σ+− − σ−+

σ+− + σ−+

,

Ω = fnlσtot
v

Vb
, σtot = σ+− + σ−+ .

f is a revolution frequency, n is a density of the positron
beam, l is the length of the interaction region, Vb is the
antiproton beam velocity, Pe is the polarization degree of
the positron beam, σ−+ and σ+− correspond to spin �ip
from ζp = ζe and ζp = −ζe, respectively.



We obtain

P0 =
(2− ln 2)

3− 2 ln 2 + ln(l2max/ξ
2)/(2πξ)2

,

σtot = σ0

{
(2πξ)2(3− 2 ln 2) + ln

l2max
ξ2

}
,

lmax ∼ mvρ� ξ, where ρ ∼ transverse beam size.
At v=0.002 and ρ ≈ 1 cm , we have P0 ≈ 0.78 which is big
enough. However, σtot ≈ 0.75mb that drastically di�ers
from the result σtot ≈ 4 · 10+13 barn obtained by WA. When
the correct value of σtot is used, the beam polarization time,
τ = Ω−1, becomes enormously large for the parameters of
positron beams available now!



Quasiclassical approximation

For small scattering angles ϑ angular momenta l are large

l ∼ ε% ∼ ε

q
∼ 1

ϑ
� 1 ,

% is the impact parameter, q is the momentum transfer,
and ε is the electron energy. One can use the quasiclassical
wave function and Green's function for electron in the
external potential V (r). In the leading quasiclassical
approximation: R.N.Lee, A.I.Milstein, V.M.Strakhovenko
(2000). First quasiclassical corrections (the parameter of
expansion is 1/l� 1): P.A.Krachkov, A.I.Milstein (2015).
For the superposition of the potential V (r) and the laser
�eld: A.Di Piazza, A.I.Milstein (2014).



In the leading approximation:

ψ
(±)
P (r) = ±

∫
d2q

iπ
exp

[
ip · r ± iq2 ∓ i

∫ ∞
0

dxV (rx)

]
×
{

1∓ 1

2p

∞∫
0

dxα · ∇V (rx)
}
uP , rx = r ∓ xn+

q

p

√
2|r · n| ,

q is a two-dimensional vector, n = p/p, q · n = 0,
uP is the conventional Dirac spinor, P = (εp,p).
Integration over q corresponds to account for quantum
�uctuations.
For the Coulomb �eld V (r) = −Zα/r,
ψ

(±)
P (r) =⇒ Furry-Sommerfeld-Maue wave function!



If one replace rx by Rx = r ∓ xn, we obtain the
conventional eikonal wave function

ψ
(in, out)
P, eik (r) = exp

[
ip · r ∓ i

∫ ∞
0

dxV (Rx)

]
×
{

1∓ 1

2p

∞∫
0

dxα · ∇V (Rx)
}
uP .

Using the quasiclassical wave functions, we investigate
(exactly in the parameters of the atomic �eld) numerous
high-energy QED processes (see P.A.Krachkov, R.N.Lee,
and A.I.Milstein; Usp. Fiz. Nauk (2016)). Example: photon
splitting in the atomic �eld. First successful observation at
Budker Institute (2001).



Why it is interesting? The Coulomb corrections change
drastically the results as compared to the Born result

Left �gure: total cross section in units σ0 = (Zα)4r2
0/16π,

A.I.Milstein and V.M. Strakhovenko (1983)
Right �gure: dσ/dt as a function of the momentum transfer
∆ for a molecule of bismuth germanate, data - circles,
theory - solid line.



Conclusion

I Precision experiments and analysis of their results
require a deep understanding of the basics of
theoretical physics. Otherwise, you will discover New
Physics every day. However, this physics will be
� new � only for you.

I We should try to safe scienti�c traditions of Landau's
school. This is important not only for our country but
also for all scienti�c community.

I Many thanks to Professor Khalatnikov for his
contribution to the right teaching of theoretical
physicists in our country!

Thank you!


