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Scanning Tunneling 
Microscopy STM shows 
the CDW modulation in 
atomic displacements 
and the electronic density.
Brun, Wang, Monceau, SB
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Main features of electronic crystals like 
Wigner crystals, charge density waves CDW, etc.

➢Space periodicity follows a local concentration of condensed electrons

➢Collective sliding under a driving field  above the threshold Et.
➢Collective sliding is a periodic coherent  anharmonic process.
➢Excess normal current is converted to the collective one via phase slip processes.
➢Transverse  flow of dislocations is an ingredient of sliding and of current conversion. 
➢Point defects – solitons as vacancies/addatoms are favorable in comparison with 
electrons as normal carriers.
➢Energetics of dislocation lines/loops is determined by Coulomb  forces and by 
screening facilities of the free carriers.
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Dislocation in CDW versus vortex in SC
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Equivalence of actions of  Ey and Hz upon the order parameters.
Reverse effect of order parameters upon the fields are opposite:
CDW – transverse electric field Ey is screened only via dislocations.
SC - magnetic field enters via vortices.

Unlike  H≈cnst in SC, E in CDW is always strong, 
needs to be determined self-consistently

)exp( iCSC =



Solid lines: maxima of the charge density. 

Dashed lines: chains of the host crystal. 

Topological defects in a CDW: dislocations, their pairs, the soliton.

Embracing only one chain of atoms,  
the pair become a vacancy or an 
interstitial   ± 2 solitons in CDW 

By passing each of these defects, 
the phase changes by 2.

STM image of CDW chains with one 
defect as 2 solitons.
At the (red) front line the defected 
chain is displaced  by half of period.
Along the defected chain the whole 

period ±2 is missed or gained

dislocations and their pairs
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Dynamic origin of dislocations 

To set up CDW motion with a velocities v:

Transfers flow of vortices - thick channel (Maki&Ong)

Coherent phase slip - thin cannel (Gor’kov)

source drain
v=0 v0

Formation of new planes Elimination of arriving planes

Phase slips:

Microscopically – self-trapping of electrons into solitons,

their  subsequent aggregation.

Macroscopically – the edge dislocation line

proliferating/expanding across the sample.

v=0



A fabricated region of smoothly

increasing friction:

The stress is built up to help the 

CDW to pass by intact.

Pinning and plasticity at macroscopic scales.
CDW flow throw a crossection with an enhanced pinning force

Sharp strong obstacle near x=0.

Crossing curves for opposite J

signifies a partial (re)conversion by 

phase slips – flashing dislocations.

Measuring local strain q= φ/x via space resolved X-ray diffraction
Rideau, SB .. et al 2001. Lines – theory fits after SB & N.Kirova.
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Numerical modeling of a spontaneous sequence of phase-slips
= space-time vortices 

SB & N. Kirova, 2019



Many temporary vortices appear in the course of the evolution.
GL based modeling (SB, N. Kirova and T. Yi).

Long living traces of amplitude nodes following fleshes of vortices.

Phase deformations cannot relax fast following rapidly moving vortices

Sample reconstruction by applying the transverce voltage to adopt 
the first stable vortex – analoge of Hc1 in superconductors.

The single stable vortex is 
left: analog of Hc1 in SC
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Phase solitons (PhS): significance, contradictions, motivation.

1. PhSs are main observable “single-particle” carriers of on-chain || 
currents with activation energies Tc<< for electrons which are seen 
in ⊥ transport .
2. As 2e charges localized over vF/Tc they must create 

a local electric field and carry a local current; 
3. Like electrons, or vacancies/addatoms, they seem to carry a mean 
current being driven by the mean electric field which is wrong:
4. Being pairs/loops of dislocations they produce long range tails which 
exactly compensate charges, currents, forces in average over any cross-
section. Particles’ currents are transferred to collective mode.
5. Even the local force Fx ≠ the gradient of their 
potential energy U under the local stress :

0

22e
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0x x x friction tF dl ds U F    − = −  =    

⊥

Fx

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Local deformations and velocities are not derivatives of a same phase

(x y z ) =    

- density of DLs, space circulation of 

DL

Phase circulation



Four variables: (x y z t ) instead of one  

Kinematics at presence of dislocation lines/loops (DL)
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Expansion
= climb

•P

Glide - conservative motion of DLs along 
the Bourges vector || chains’ direction

Climb: transverse motion of D-lines or growth/shrinking of D-loops by
adhesion of non-crystalline matter = conversion of electrons in CDWs.
dnd/dt  0, nd – density of defects = transverse area of D-loops. 

Two types of dislocation motion: Glide and Climb

dlTF x⊥

P

glide

jd 
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Invariant averaging over D-loops, including solitons
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nd – density of defects = projected DL area per volume

dt
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Consequences:
There is a uniquely defined function  such that

/ 2t t dj   = + / 2x x dn   = +
, , / 2y z y z   =

Invariantly averaged phase χ reduces four equations for four variables 
i to the single one, as it was without vorticity.

Averaging result:
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P  – density of discontinuities at 
arbitrary surfaces based on DL:

 P = −  

,I - physical singularities at the DL,
P,  – non-physical singularity at a surface based upon the DL
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Fix the time dependent part of the gauge:
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ω I , I   are singular at DL only. Now the same holds for
Discontinuity surface is arbitrary only at some initial t=0. 
Afterwards        evolves only along the surface passed by DL, 
that is following the trace of physical singularities.
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From kinematics to dynamics.

Local material relations:
Velocity : v=t  /dt

Strain :     Stress : = W/

Equilibrium:

=Ffrc(v)  mdv/dt+ v

Defect energy per chain x =U

Force  driving current of defects is 

NOT the gradient of their potential:

Fdx≠-∂xU but 

The two forms are not identical

because      =friction 0 

Glide of defects is enforced by share

strains - gradients transverse to 
chains.

nn – normal electrons
R phase slip rate= conversion rate
R(0)=0 – important and ambiguous
physical input

DW specific relations:
Poisson equation: W/=0

Normal carriers: 

Chemical potential : n=W/n

Current: jn=-n

Conservation : 

Source – drain = conversion
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The CDWs functional of the free energy W
(linear density per chain area):

( ) ( )

2 2 2

2

4

1 1
,

2 8

F
x y y z z x

F x n loc n

v e
W

e v n F n A

     
 




 = + + +  

 
+  + + −  

 

A – CDW amplitude, the gap   A
αx,y A2 - share modules from interchain CDW coupling
nn – concentration of normal carriers
Floc(nn,A) - free energy at a given concentration of normal carriers. 
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The local balance of forces for the viscous media
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Equations for average variables

( )2 2 2 2x t x d x n dj n n   ⊥
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The density and the current of defects contribute 
in the frame of the average phase 
while they were doomed  with respect to local deformation 

What does drive the phase: friction of D-loops, 
|| gradient of their concentration together with normal carriers

At presence of noncompensated dislocation lines
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Conservation law for the total charge
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( )ˆ 2 2( 1)t d d d x d pinb n D n E F    ⊥+ − −  +  + +  = +

the allowance for defects' motion contributes additively to the 
transverse rigidity  of the phase and to the driving force from the 
gradient of the defects' concentration

⊥

n - the partial concentrations of defects with two signs of vorticity, 
n+ - n- =nd- – sign-sensitive mean concentration of defects,
n+ + n- =nd+ – total concentration of defects of both signes,
In equilibrium chemical potential d=0 , nd+ = nd,tot

Forces: Fd=⊥. Currents of defects in the diffusion approximation, 

,
ˆ( ) ( ) ( )d d d d x d d tot x dj b F n n D n n b n  + − + − ⊥= + −  − =  − 

( )/ 2exp /dn n T = 
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CDW reality: unscreened  Coulomb forces, low temperature

Nonlocality of Coulomb interactions:
nonlocal elasticity, higher order of the 
Laplassian
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Electroneutrality  at r0=0

Driving force:
only || gradients of normal carriers and defects

r0 –Debye screening 
length in a parent metal.

Resulting phase equation:
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These simple relations show actually  not always expected results:
1. Solitons do add to charge density and current on top of collective ones.
2. The elastic response x

2 to the current J is given curiously 
by the diffusion coefficients of defects. 
3. The elastic response x

2 to the electric field E contains the product Dd of 
kinetic coefficients: collective mode friction and the diffusion of its nonlinear 
excitations. The conventional thermodynamic elasticity (E=x

2 ) is suppressed 
by the electroneutrality condition r0=0. 

4. The I-V J(E) dependence does not know about defects: all goes to the 
indistinguishable sliding.
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Crosssection integration at at r0=0 :
Gapful CDW at low T, the only carriers are the phase solitons.
The specific driving force          upon defects vanishes after the 
integration in view of the zero-stress side boundary conditions.
The integrated current of defects is driven only by the diffusion:

⊥
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Isolated dislocation at presence of solitons.

Distributions around a dislocation centered at (0,0);  
Vectors and streamlines characterize the phase. 
The color indicates the chemical potential   zT. 
Z changes from  0 at large distances (green color) 
to a maximal value 2.5 (abundance of solitons) 
near the origin (red) and then drops to zero (blue).
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F(A,nn) - free energy of vacuum and normal carriers
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Expect A2 – actually 1.
Non analytic in Ψ

Both terms are not derivable perturbatively – the chiral anomaly.
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An implicit mechanism for nn , jn to compensate ∂ at A→0

Annals of Physics, 403 (2019) 184
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Conclusions

The presented scheme is a minimal version of the multi-fluid 
hydrodynamics of plastic flows in CDWs. The results:

• provide phenomenologically rigorous relations among observables
• allow for some, not quite expected, interpretations,

particularly on the control variables and driving forces  
• provide a basis for analysis of  modern experimental studies of CDW 

at constraint geometries, meso & nano scales.
• Theory still needs to take into account the distribution, 

and its evolution, of loops' dimensions to describe their aggregation 
towards macroscopic objects.


