KHALATNIKOV 100

Landau Institute, October 17-20, 2019, Chernogolovka

Aerogels in superfluid 3He

I. A. Fomin

P. L. Kapitza Institute for Physical Problems, RAS

Superfluid ³He *p*-wave, I=1,s=1 Cooper pairing

$$\Psi_{\mu} = \Sigma A_{\mu j} k_{j}$$

orbital index j=1,2,3, enumerates px,py,pz-orbitals

spin index $\mu = 1,2,3$

P-wave Cooper pairing (I=1, s=1).

А-фаза:

 $A_{\mu i} = \Delta d_{\mu} (m_i + i n_i)$

B-фаза: $A_{\mu i} = |\Delta| e^{i\varphi} \mathbf{R}(\hat{\mathbf{n}}, \theta)_{\mu i}$ $\mu, i = 1, 2, 3$

Self-supporting structure – aerogel (SiO₂).

- [1] J. V. Porto and J. M. Parpia, Phys. Rev. Lett., 74, 4667 (1995)
- [2] D. T. Sprague, T. M. Haard, J. B. Kycia, V. R. Rand, Y. Lee, P. Hamot and W. P. Halperin, *Phys. Rev. Lett.*, **75**, 661 (1995)

Porosity P up to 99.5%. Usually about 98%

FIG. 2: The pair correlation length of superfluid ³He in aerogel (solid curve) as a function of pressure is shown in comparison with an aerogel strand-strand correlation length, $\xi_a \simeq 40 \,\mathrm{nm}$. A cross-over occurs near $p \approx 15 \,\mathrm{bar}$. The bulk ³He correlation length is also shown (dashed curve).

DLCA simulation of a silica aerogel depicting the length scales δ and ξ_a (courtesy of T.M. Lippman).

Impurity

- Silica ball size:
 - δ**≈**3 nm
- Correlation length:

 $\xi_a \sim 10$ - 100 nm

• Superfluid coherence length:

 $\xi \approx 20 - 80 \text{ nm} (P = 34 - 0 \text{ bar})$

• Expect interesting physics when: $\xi \sim \xi_a$

FIG. 3. Panel (a) shows a 300-Å-thick slice of the aerogel shown in Fig. 2(a). A similar slice of the random arrangement of spheres is shown in panel (b).

FIG. 1: Phase diagram for superfluid ³He in two different samples of 98% aerogel. The known superfluid phases of

98.2% aerogel:

$\Phi \to H_{\mu}H_{\nu}A_{\mu j}A_{\nu j}^{*} \qquad \delta \Phi \propto \Delta^{2}(H_{\nu}d_{\nu})^{2}$ $d \perp H \qquad S_{z} = \pm 1$

 $A_{\mu j} = \Delta \frac{1}{\sqrt{2}} \hat{d}_{\mu} (\hat{m}_j + i\hat{n}_j) - \text{ABM}$

M.Kubota, O.Ishikawa, T.Mizusaki and Yu.M.Bunkov. Письма в ЖЭТФ, **86**, 244 (2006)

K. Aoyama and R. Ikeda, Phys. Rev. B 73, 060504 (2006)

Quest for the polar phase

R.Sh. Askhadullin, V.V. Dmitriev, D.A. Krasnikhin, P.N.Martinov, A.A. Osipov, A.A. Senin, and A.N. Yudin, JETP Lett. 95, 326 (2012).

V.V. Dmitriev, A.A. Senin, A.A. Soldatov, and A.N. Yudin, Phys. Rev.Lett. 115, 165304 (2015).

V.E. Asadchikov, R.Sh. Askhadullin, V.V. Volkov, V.V. Dmitriev, N.K. Kitaeva, P.N. Martynov, A.A. Osipov, A.A. Senin, A.A. Soldatov, D.I. Chekrygina, and A.N. Yudin, JETP Lett. 101, 556 (2015).

V.V. Dmitriev, L.A. Melnikovsky, A.A. Senin, A.A. Soldatov, and A.N. Yudin, JETP Lett. 101, 808 (2015).

S. Autti, V.V. Dmitriev, J.T. Maekinen, et al., Phys. Rev.Lett. 117, 255301 (2016).

V.V. Dmitriev, A.A. Soldatov, and A.N. Yudin, Phys. Rev.Lett. 120, 075301 (2018).

Squeezed aerogel

Spin dynamics in the LIM state can be obtained from Leggett equations

CW NMR frequency shift in A, PdA and polar phases:

NOTE: Here K has been calculated in the weak coupling limit. Experiments show that K in the polar phase is decreasing (from 4/3 down to 1.15) with the increase of pressure from 0 to 29.3 bar.

"Obninsk aerogel"

Al₂O₃ aerogel produced in Leypunskiy Institute of Power Engeneering (Obninsk, Moscow region) R.Sh.Askhadullin et al., J. of Phys.: Conf. Ser., **98**, 072012 (2008)

Effective density: 8-40 mg/cm³ Diameter of strands: 6-10 nm Distance between strands: ~100 nm For 30 mg/cm³ sample mean free paths along and transverse to strands are 850 and 450 nm.

tion of magnetization is non-exp ire and on inhomogeneity of exter s the relax G-SG state is orientation of the mignetic field e induct on decay size al was lo by formation of coherently prece numbers 67.57 Pg. 67.57.Lm, 6 iction

Samples have been supplied by R.Sh.Askhadullin, P.N.Martynov, A.A.Osipov (Leypunsky Institute, Obninsk, Russia)

SEM picture for 30 mg/cm³ sample

Sample A. Normalized frequency shift on cooling (ESP phase)

Pis'ma v ZhETF, vol. 95, iss. 6, pp. 355 - 360

Phase diagram of superfluid ³He in "nematically ordered" aerogel

R. Sh. Askhadullin⁺, V. V. Dmitriev¹), D. A. Krasnikhin, P. N. Martynov⁺, A. A. Osipov⁺, A. A. Senin, A. N. Yudin

he phase diagram of liquid ³He in "nematically orerogel obtained on cooling from the normal phase. t the temperature is normalized to the superfluid n temperature in bulk ³He. See text for explanaAl₂O₃ aerogel ("Nafen") produced by ANF Technology Ltd (Tallinn, Estonia)

Effective density: 90 mg/cm³ (97.8% open) or 243 mg/cm³ (94% open) Diameter of strands: ~10 nm Distance between strands: ~40-70 nm

For 90 mg/cm³ sample mean free paths along and transverse to strands are 950 and 250 nm, for 240 mg/cm³ sample mean free paths along and transverse to strands are 560 and 60 nm.

Samples have been supplied by I.Grodnenskiy (ANF Technology Ltd, Tallinn, Estonia) – "Nafen".

SEM picture for 90 mg/cm³ sample

FIG. 4 (color online). Continuous wave NMR frequency shifts versus temperature in ³He in nafen at P = 7.1 bar. Open symbols: the SN state; filled symbols: data obtained after attempts to create the SG state. $\mu = 0$ (circles), $\mu = \pi/2$ (triangles). (a) Nafen-243. $T_{ca} \approx 0.94T_c$. The dashed line corresponds to Eq. (4) with K = 1.245. (b) Nafen-90. $T_{ca} \approx 0.955T_c$. The dashed line corresponds to Eq. (4) with K = 1.245.

FIG. 5 (color online). *K* in the polar phase versus pressure. Open triangles—³He in nafen-90, filled circles—³He in nafen-243. Dotted and dashed lines correspond to *K* expected from Eq. (3) for polar and *A* phases, respectively. Depending on the temperature range used for determination of *K*, the obtained values vary by $\pm 2\%$ that limits the accuracy.

FIG. 2 (color online). Phase diagram of ³He in nafen-243 (a) and in nafen-90 (b). Filled circles mark the superfluid transition of ³He in nafen. Open circles mark the transition between polar and polar-distorted A phases. Filled triangles mark the beginning of the transition into the polar-distorted B phase on cooling. Open triangles mark the beginning of the transition into the distorted A phase on warming from the distorted B phase. The widths of the A-B and B-A transitions are ~0.02T_{ca}. The white area shows regions with no experimental data.

Polar Phase of Superfluid 3He in Anisotropic Aerogel V. V. Dmitriev, 1,* A. A. Senin, 1 A. A. Soldatov, 1, 2 and A. N. Yudin 1

PRL 115, 165304 (2015) PHYSICAL REVIEW LETTERS week ending 16 OCTOBER 2015

Figure 1: SEM image of the surface of nafen-90.

Topological nodal line in superfluid ³He and the Anderson theorem

V.B. Eltsov,¹ T. Kamppinen,¹ J. Rysti,¹ and G.E. Volovik^{1,2}

¹Low Temperature Laboratory, School of Science and Technology, Aalto University, POB 15100, FI-00076 AALTO, Finland ²L.D. Landau Institute for Theoretical Physics, Moscow, Russia

"Quest for the polar phase" is success. Now we know how to prepare the polar phase as well as a polar distorted A-phase. But some Important questions still have to be clarified:

1) What aerogel is "good", or which property of e.g. nafen Is crucial for stabilization of the polar phase.

2) Why the global anisotropy induced by Obninsk aerogel is not sufficient for stabilization of the polar phase in spite of theoretical predictions.

3) Why nafen-243 having porosity smaller than 94% does not suppress superfluidity of 3He completely.

There is important input from the experiment.

Effect of Magnetic Boundary Conditions on Superfluid ³He in Nematic Aerogel

V. V. Dmitriev,^{1,*} A. A. Soldatov,^{1,2} and A. N. Yudin¹ ¹P.L. Kapitza Institute for Physical Problems of RAS, 119334 Moscow, Russia ²Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

(Received 27 September 2017; revised manuscript received 19 December 2017; published 13 February 2018)

PHYSICAL REVIEW LETTERS 120, 075301 (2018)

TABLE I	. Characte	ristics of	the sau	mples: ρ	is th	e overall
density, d	is the mean	distance	between	axes of a	adjacer	t strands.

Sample	$\rho ~({\rm mg/cm^3})$	Porosity (%)	<i>d</i> (nm)	l_{\parallel} (nm)	l_{\perp} (nm)
nafen-72	72	98.2	64		
nafen-90	90	97.8	58	960	290
nafen-243	243	93.9	35	570	70
nafen-910 ^a	910	78	18		
^a Prepared f	rom nafen w	vith density 72	mg/cm ³	(see Ret	f. [38]).

A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 35, 1558 (1958).
A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 319 (1959).

$$V(\mathbf{k}, \mathbf{k}') = 3g(\mathbf{k} \cdot \mathbf{k}')$$

I.A.Fomin, JETP 127, 933 (2018):

$$\begin{aligned} (i\omega - \xi - \overline{G_{\omega}})G(k) + (\Delta + \overline{F_{\omega}^{\dagger}})F^{\dagger}(k) &= 1 \\ (i\omega + \xi - \overline{G_{\omega}})F^{\dagger}(k) + (\Delta + \overline{F_{\omega}^{\dagger}})G(k) &= 0 \\ \overline{G_{\omega}} &= \frac{n}{(2\pi)^{3}} \int |u(k - k')|^{2} \frac{i\tilde{\omega} + \xi}{\xi^{2} + \tilde{\omega}^{2} + \tilde{\Delta}^{2}} d^{3}k' \\ \overline{F_{\omega}^{\dagger}} &= \frac{n}{(2\pi)^{3}} \int |u(k - k')|^{2} \frac{\tilde{\Delta}}{\xi^{2} + \tilde{\omega}^{2} + \tilde{\Delta}^{2}} d^{3}k' \\ \overline{U(\mathbf{k})} &= 2\pi\delta(k_{z})u(\kappa)\sum_{a} e^{-i\kappa\rho_{a}} \cdot \mathbf{\Delta} \sim k_{z} \quad \left[\frac{1}{\tau} = n_{2}m^{*}|\overline{u}|^{2},\right] \end{aligned}$$

$$\begin{split} -\frac{\overline{G_{\omega}}}{i\omega} &= \overline{F_{\omega}^{\dagger}} \\ i\tilde{\omega} &= i\omega\eta \qquad \tilde{\Delta} = \Delta\eta \\ \eta &= 1 + \frac{1}{2\tau\sqrt{\omega^2 + \Delta^2}} \\ \{\omega, \Delta\} \to \{\omega\eta, \Delta\eta\} \\ \eta \ (\text{and } \tau \) \text{ drop out of the equation for } \Delta(T) \\ \Delta(T, \tau) &= \Delta(T, \tau \to \infty) \\ T_c &= T_c(\tau \to \infty) \end{split}$$

Anderson theorem

Apparent conflict with the well known statement for unconventional Cooper paring: detrimental effect of potential impurities (A.I. Larkin, JETP Letters **2**, 130, (1965))

Рассмотрим сначала влияние примесей на векторное спаривание. Усреднение уравнений для функций Грина производится так же, как и при скалярном спаривании ^[4],и приводит к появлению собственно энергетических частей \overline{G} и \overline{F}

$$(i\omega_n + i\bar{G} - \xi)G + (\Delta + \bar{F})F^* = 1,$$

$$(i\omega_n + i\bar{G} + \xi)F^* + (\Delta^* + \bar{F}^*)G = 0,$$
 (1)

rge
$$\vec{G} = in \int |u(\vec{p} - \vec{p}')|^2 G(\vec{p}') \frac{dp'}{dt}; \vec{F} = n \int |u(\vec{p} - \vec{p}')|^2 F(\vec{p}) \frac{d\vec{p}'}{dt}$$
(2)

п – концентрация примесей, и(q) – фурье-компонента потенциала взаямодействия электрона с атомом примеся.

Будем считать, что во взаямодействии между электронами преобладает притяжение в *P* - состоянии (симметричное по спиновым индексам):

$$\hat{V} = g(\bar{n}, \bar{n}') (\sigma^{i} \sigma^{i})_{\mu \sigma} (\sigma^{i} \sigma^{i})_{\mu \sigma}, \quad \bar{n} = \bar{P} / \bar{P}_{\alpha}.$$
 (3)

Уравнение для критической температуры получается из (5) при △→0.

$$1 = g \rho \sum_{\omega_n} \frac{1}{|\omega_n| + \frac{1}{2t_{tr}}}, \quad ln = \frac{T_{co}}{T_c} = \Psi \left(\frac{1}{2} + \frac{1}{4\pi t_{tr}}\right) - \Psi \left(\frac{1}{2}\right). (6)$$

$$\overline{F_{\omega}^{\dagger}} = \frac{n}{(2\pi)^3} \int |u(k-k')|^2 \frac{\tilde{\Delta}}{\xi^2 + \tilde{\omega}^2 + \tilde{\Delta}^2} d^3k' = 0$$

Magnetic scattering

A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 39, 1781 (1960).

$$\begin{aligned} H_{int} &= \sum_{a} J\psi^{\dagger}(\mathbf{r}_{a})\hat{\sigma}^{k}\hat{S}_{a}^{k}\psi^{\dagger}(\mathbf{r}_{a}), \\ &\ln\frac{T_{c0}}{T_{cs}} = \psi\left(\frac{1}{2} + \frac{1}{2\pi\tau_{s}T_{cs}}\right) - \psi\left(\frac{1}{2}\right) \qquad T_{c0} - T_{cs} = \frac{\pi}{4\tau_{s}}. \\ &\frac{1}{\tau_{s}} = \frac{\pi N_{0}n_{s}J^{2}}{4} \qquad \frac{T_{c0} - T_{cs}}{T_{c0} - T_{c1}} \sim (N_{0}J)^{2} \qquad J \approx 100 \text{ mK} \\ &(N_{0}J)^{2} \approx 1/10 \div 1/20. \end{aligned}$$

I.A.Fomin, JETP **127**, 933 (2018): Magnetic scattering seems to be too small V.P.Mineev, Phys.Rev.**B** 98, 014501 (2018): Magnetic scattering can decrease effective anisotropy

Magnetic scattering lowers the transition temperature, but does not "spoil" the order parameter of the polar phase.

Specular reflection versus diffuse

Specular reflection – pure *m*=0 state (polar phase) – Anderson theorem. Diffuse reflection – admixture of other components – Larkin situation

Admixture of two other projections *m*=-1, *m*=+1 makes the phase "unconventional"

A test for unconventional Cooper pairing in metallic superconductors and new materials (cuprates, Fe-based, ruthenates etc.). Concept of *superconducting fitness* for multi-orbital superconductors.

A. Ramires and M. Sigrist, Phys. Rev. **B 94**, 104501 (2016)

 $[H_0(\mathbf{k}), \hat{\Delta}(\mathbf{k})]^* = F(\mathbf{k})(i\sigma_2),$

F(k) = 0 condition of the "compatibility of arbitrary pairing states with a given normal state Hamiltonian".

Generalized Anderson`s theorem for superconductors derived from topological insulators., L. Andersen, A. Ramires, Z Wang, T. Lorenz, and Y. Ando, arXiv: 1908.08766 (23 Aug 2019)

1) What aerogel is "good", or which property of e.g. nafen Is crucial for stabilization of the polar phase.

1a) Long straight strands with specular reflection.

2) Why the global anisotropy induced by Obninsk aerogel is not sufficient for stabilization of the polar phase in spite of theoretical predictions.

2a) Because of admixture of m=1 and m=-1 components due to diffuse part of scattering amplitude.

3) Why nafen-243 having porosity smaller than 94% does not suppress superfluidity of 3He completely.

3a) Because of Anderson theorem.

Three samples were cut from the same piece of mullite nematic aerogel) with porosity ~96%. One sample was used in experiments with vibrating wire (poster P2.9). One of 2 remaining samples was squeezed by 30% in the direction transverse to the strands ("squeezed sample") and was used in NMR experiments together with unsqueezed sample ("original sample"). All samples have a characteristic sizes ~ 2.5 - 4 mm.

SEM picture of the mullite sample

nafen-90

Spin diffusion

Spin diffusion in the original sample (along and transverse to the strands)

In the limit T=0 the diffusion is limited by the aerogel strands.

We may introduce the effective mean free paths of ³He quiparticles which are determined only by aerogel. In case of specular scattering in ideal nematic aerogel we expect that at $T \rightarrow 0$

 $\lambda_{\parallel} \rightarrow \infty$

Sample	Porosi ty (%)	T _{ca} at 7.1 bar	$\lambda_{\perp}, \lambda_{\parallel}$ (nm)
nafen-90	97.8	0.955	290 960
original mullite	96	0.968	235 1350
squeezed mullite	94.3	0.957	130 550

Phase diagrams of ³He in mullite samples (the strands are covered by ⁴He)

original sample

squeezed sample

 $\lambda_{\perp} = 235 \, nm$

 $\lambda_{\perp} = 130 \, nm$

V.V. Dmitriev, QFS 2019

- 1. In ³He in ideal nematic aerogel ($\lambda_{\perp} \rightarrow \infty$ at T=0) $T_{ca}=T_c$
- 2. Region of existence of the polar phase is proportional to ξ_0 / λ_\perp