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• ”Moscow Zero” is a phenomenon discovered by L.D.Landau,

A.A.Abrikosov, I.M.Khalatnikov (1954) concerning the UV prop-

erties of QED. The observed value of the coupling αph = 1/137

relates to its ”bare” value α0 as

1

αph
=

1

α0
+ β2 log

Λ

M
,

1

α0
=

1

αph
− β2 log

Λ

M
,

where β2 = Nf/6π
2, and Λ is UV cutoff energy. When Λ increases,

the bare coupling α0 must be increased, too, in order to keep αph
fixed, equal to 1/137. And, as the second form of the equation

makes explicit, the cutoff Λ has an upper bound (or ”Landau-

Abrikosov-Khalatnikov (LAK) scale”)

Λ∗ = M e
1

β2 αph ≃ 10280

at which α0 diverges, i.e. 1/α0 turns to zero, and then becomes

negative. Since α0 enters the action as

AQCD ∼
1

α0

∫
F2
µν + ...

one is advised to keep Λ below Λ∗, since otherwise the path integral

behaves badly for short range field fluctuations. One says that

”QED is not UV complete”.
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Certainly, this conclusion was based on a number of admissions.

The above equation relating α0 to αph is derived if one neglects

all terms in the beta function

dα

d logµ
= β(α) = β2α

2 + ...

beyond the lowest order. When α grows, higher terms may be-

come important. The higher order terms in AQCD may become

important as well.

Nonetheless, the described behavior is believed to be qualitatively

correct in QCD, and indeed the phenomenon likely extends to a

large class of QFT. Importantly, it agrees well with general pattern

suggested by Wilson’s Renormalization Group.
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In general setting, Wilson’s RG transformations act in

Σ = the Space of Field Theories

which may be regarded as the set of quasilocal actions

A =
∫
x
L (ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), ...)

where ϕ(x) stands for a collection of ”fundamental fields” - the

integration variables in the path integral. The path integral is

assumed to have UV cutoff Λ. The action may include higher

derivatives, but it is assumed that the derivative expansion con-

verges for |k| < Λ. (At this point the question of unitarity is

ignored). The quasilocal action A is accepted as a member of Σ

provided the (Euclidean) path integrals∫
D[ϕ] (...) e−A[ϕ]

are convergent.
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RG transformations represent scale transformations in field theory.

If one simply rescales x → x/L with some L > 1, that would also

change the cutoff Λ → LΛ, that is one also needs to integrate

out degrees of freedom with |k| between Λ and LΛ. This leads

to L-dependent transformation of the action A → RL{A}, or, in

infinitesimal form

d

dl
A = B{A} , l = logL

Assuming that Σ may be coordinatized with an (generally infinite)

set of parameters {αi}, this translates to a system of ordinary

differential equations

dαi

dl
= Bi({α}) (Bi = −βi)

The ”RG trajectories” - the integral curves of this system of dif-

ferential equations - give insight into the scale dependence of

physics. Large scale properties are obtained by integrating the

RG equations forward in ”RG time” l (= log of the length scale).
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One does not expect any pathologies Al with l > 0, as long as

A0 is well defined. Indeed, it is assumed that path integral with

A0 is convergent and well defined as QFT. Integrating out part

of variables is not expected to change that.

However, as the system of differential equations, the RG flow

equation can be integrated ”backward”, to negative values of the

”RG time” l, as well.

Remark: This would be true if the number of couplings αi was

finite. In exact RG this number - the dimensionality of Σ - is

infinite. There is an interesting question if the common prop-

erties of finite-dimensional systems (like uniqueness of solution)

remain generally valid in exact, infinite dimensional, equations.

It is usually assumed to be the case - after all, in any practi-

cal implementation of RG transformation some finite-dimensional

approximation is used. But it may be one of ”dangerous” assump-

tions. Generally, it is not completely clear how such ”backward”

integration agrees with generally ”irreversible” nature of the RG

transformations.
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Although it is likely possible to integrate ”backward”, there are no

reasons to assume that this can be done indefinitely, while staying

within the space Σ along the way. In fact, one expects something

opposite. Indeed, consider A−l with l >> 1. Should A−l ∈ Σ,

then A0 with cutoff Λ could be obtained from A−l by an RG

transformation, which means it would be essentially equivalent to

another theory with much larger cutoff elΛ, i.e. with much shorter

interaction range then A0 itself has. This is generally unlikely,

which is to say that generally A−l leaves Σ for sufficiently large l.

−l*

Σ

Here be dragons

This picture assumes that Σ has a boundary separating ”well de-

fined” actions from the wild expanse beyond, where all ”patho-

logical” A lie.
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Thus, given A0, one generally expects that at some l = l∗ the

theory A−l crosses that boundary, and then leaves Σ. If this

happens at finite l∗, we say that the theory is ”UV incomplete”

(as a quantum field theory)

There is, of course, small but important subspace Σ(∞) ⊂ Σ for

which l∗ = ∞, i.e. the RG flow can be integrated ”backwards”

without limit (e.g. the flows which stem from UV fixed points, but

more complicated scenarios are conceivable). This is the subspace

of UV complete QFT, in which UV cutoff can be consistently

removed. Non-abelian gauge theories in 4D, 3D Wilson-Fisher

theory, are well known examples.
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Note that, given arbitrary A0 ∈ Σ, the corresponding l∗ is deter-

mined solely by A0 itself. Thus, if l∗ < ∞, the theory A0 has an

intrinsic UV scale

Λ∗ = M el∗

where M is some ”physical” mass scale, say the inverse correlation

length R−1
c . Thus, the ”intrinsic” cutoff Λ∗ is independent of the

”auxiliary” RG cutoff Λ (more precisely, the ratio Λ∗/M is RG

invariant).

If l∗ < ∞, the ”Landau-Abrikosov-Khalatnikov scale” Λ∗ sets the

upper limit for the cutoff Λ. If one assumes Λ > Λ∗, some kind of

pathology is expected at the distances < Λ−1
∗ . Generally, physical

characteristics of the cutoff theory Al are expected to develop

some singularity at l = −l∗ (in QED αph(Λ) develops famous pole

at the Landau-Abrikosov-Khalatnikov scale).
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What kind of ”pathology” is expected? By definition, the ”theo-

ries” outside Σ can not be described by convergent path integral

with a quasilocal action A[ϕ]. So, what can happen when one

continues (analytically) to the scales beyond the LAK scale?

This may look like a question with no physical significance - typi-

cally, we are interested in the large scale behavior of microscopi-

cally defined systems. And the bulk of the ”dragon infested area”

outside Σ is likely filled with various microscopic stuff, with built

in scales Λ∗.

However, the question may be of interest, from two points of view.
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• One is related to attempts to understand the geometry of the
”theory space” Σ. From this point of view, it is natural to as-
sociate the tangent space TΣ |QFT with (some simple subspace
of) the space of local fields FQFT of the given QFT. And FQFT is
furnished by composite fields Oi(ϕ(x), ∂ϕ(x), ...) with arbitrary high
derivatives (one needs to include all of them if the OPE structure is
to be preserved). This allows for ”actions” which are not bounded
from below, and/or not quasilocal. Thus, it seems understanding
the ”theory space” in geometric terms requires including at least
some parts of the area outside Σ.

• Another perspective comes from the S-matrix theory. There is
a large and growing body of evidence that if one takes a generic
S-matrix, which satisfies all the standard conditions (unitarity, an-
alyticity, crossing, bootstrap,...), there may be no ”local struc-
ture” (understood as a set of operators with the conventional
local commutativity condition) behind it, and that this is a norm
rather then exception. Well known examples come from string
theories, and this situation is expected to be typical in any theory
involving quantum gravity. However, it is possible (and likely) that
the class of relativistic S-matrices with no local structures is much
wider than that.
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In this talk I will describe an example (and indeed a class of ex-

amples) in D = 2, which admits some sort of ”exact solution” -

the so-called ”(T T̄ ) flow”. The setup is as follows.

Consider generic 2D QFT ∈ Σ. I will discuss in flat 2D Euclidean

Space, and use notation z for its points. Complex coordinates

(z, z̄)

z = (z, z̄) : z = x+ iy , z̄ = x− iy

will usually be used. I will write local fields as O(z) = O(z, z̄).

The QFT conserves energy and momentum, and the associated

local densities constitute the Energy-Momentum Tensor Tµν. We

assume

Tµν = Tνµ , ∂µT
µν = 0 .

Below I use CFT-inspired notations

T = −(2π)Tzz , T̄ = −(2π) T̄z̄z̄ , and Θ = (2π)Tzz̄ ,

in which the continuity equation takes the form
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∂z̄ T = ∂zΘ , ∂z T̄ = ∂z̄Θ .

Some properties of the operator products of these fields follow

from the above equations alone. The one important to me now is

T (z)T̄ (z′)−Θ(z)Θ(z′) = X(z′) + derivatives ,

where

”derivatives” =
∑
i

Ci,µ(z − z′) ∂µOi(z
′) .

The first, non-derivative term comes with the OPE coefficient

CX(z − z′) = 1. This follows from the identity

∂z̄
(
T (z)T̄ (z′)−Θ(z)Θ(z′)

)
=

(∂z + ∂z′)
(
Θ(z)T̄ (z′)

)
− (∂z̄ + ∂z̄′)

(
Θ(z)Θ(z′)

)
,

and similar identity for ∂z(...). (Use OPE for the products in the

r.h.s.)
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This uniquely defines a scalar local field, of exact dimension 4,

X(z) ≡ (T T̄ )(z) ,

uniquely, up to adding derivatives. Since scalar fields (modulo

derivatives) are vectors in the tangent space TΣ|QFT , the field X

defines uniquely a tangent vector

X ∈ TΣ|QFT .

A number of consequences follow. For instance, consider given

QFT in the geometry of a cylinder, with the spatial coordinate

compactified on a circle, x ∼ x +R,

y

x
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At finite size the Hamiltonian has discrete spectrum - I assume

that the QFT is compact, for simplicity, and I denote |n⟩ the corre-

sponding eigenstates. Take the diagonal matrix element ⟨n | ... | n⟩
of the above operator identity. Derivatives do not contribute, and

the cluster property at large separations suggests

⟨n | (T T̄ )(z) | n⟩ = ⟨n | T (z) | n⟩⟨n | T̄ (z) | n⟩ − ⟨n | Θ(z) | n⟩2 .

Moreover, the expectation values in the r.h.s. can be expressed in

terms of the eigenvalues

En(R) , Pn(R) =
2π ℓn

R
.

because

⟨n | Tyy | n ⟩ = −
1

R
En(R) , ⟨n | Txx | n ⟩ = −

d

dR
En(R) ,

⟨n | Txy | n ⟩ =
i

R
Pn(R) .

One derives

⟨n | (T T̄ ) | n ⟩ = −
π2

R

(
En(R)

d

dR
En(R) +

1

R
P2
n (R)

)
.
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T T̄ flow

Consider a curve Aα in Σ, with α being the parameter along the

curve, such that at each point the tangent vector to the curve is

∼ X = (T T̄ ),

dAα

dα
=

1

π2

∫
(T T̄ )α(z) d

2z ,

where the subscript in Xα ≡ (T T̄ )α is added to emphasize that the

field belongs to the QFT Aα:

Xα
Σ

α

I call the curves Aα the ”(T T̄ ) flow”.
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Remark: Note that (T T̄ ) is ”irrelevant” in the RG sense (by con-

struction, it has exact dimension 4). Usually, perturbing with an

RG irrelevant operator does not unambiguously define a theory,

as one has to add along a tower of largely undetermined ”coun-

terterms” of yet higher dimensions. In the case in question the

defining equation dAα/dα = 1
π2

∫
(T T̄ )α(z) d2z can be regarded as

an infinite set of ”normalization conditions” which fully define all

the counterterms.
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Since at any point of the curve

∂En(R,α)

∂α
= ⟨n |

∫
(T T̄ )α(z) dx | n⟩ = R ⟨n | (T T̄ )α | n⟩α

one arrives at closed differential equation

∂

∂α
E(R,α) + E(R,α)

∂

∂R
E(R,α) +

P2(R)

R
= 0 .

where I’ve dropped the index n in

E(R,α) = En(R,α)

because the equation is the same for all levels. The equation has

the form of equation of motion for compressible inviscid fluid in

1D - the (inviscid) Burgers equation - with the ”driving force”

−P2/R = (2πk)2/R3. Given E(R,0) one can determine E(R,α) at

all α along the flow.
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This equation can be used to derive a number of other results,

including exact α dependence of the particle scattering amplitudes.

In the limit R → ∞ the finite size spectrum defines the density of

states, and thus the S-matrix. For example, the elastic 2 → 2

element deforms as

S2→2(s, α) = S2→2(s, α) e
−iα

√
s(s−4M2) ∼ S2→2(s, α)e

−iαE2
CM

Note the abnormally fast growth of the additional phase at high

energy.

Deformations of other S-matrix elements are given by similar but

more complicated formulae.
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Important general conclusion can be made about the UV behavior

of the ground state energy Eα(R) = E(R,α). For the ground state

P = 0, and the Burgers equation admits elementary solution

Eα(R) = E0 (R− αEα(R)) ,

which takes even more transparent form in terms of the functions

Rα(E) and R0(E), inverse to Eα(R) and E0(R), respectively:

Rα(E) = R0(E) + αE .

The plot of Rα(E) is related to the plot of R0(E) by the affine

transformation E → E, R → R+ αE.
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Assume that A0 is UV complete QFT, whose UV limit is controlled

by CFT with the central charge c > 0. Then the plot of E0(R)

looks, qualitatively, like this

cπ
R6

F0 R

R

E

At large R it approaches the linear form E R, with E being the bulk

vacuum energy density, while as R → 0 it has the standard CFT

behavior. The above affine transformation reveals the following

form(s) of Eα(R)
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RFα
1
α R

R

E

RFα

1
α R

R

E

where the left plot applies to the case α > 0, while the right plot

corresponds to α < 0.

There are reasons to believe that, when originated at UV complete

A0, the (T T̄ ) flow is ill-defined (has no ground state) at α > 0 (I

will bring up some argument later in this talk). Therefore, here

I concentrate on the case of negative α. As the plot shows, in

this case Eα(R) develops square-root singularity at some positive

R = R∗, so that continuation to R < R∗ returns complex values.
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For example, if A is itself a CFT, i.e.

E0(R) = E0R−
πc

6R
,

then

Eα(R) = EαR+
R

2α̃

(
1−

√
1+ t

)
,

where Eα = E0/(1 + αE0), α̃ = α (1 + αE0), and

t =
2πcα

3R2
.

The singularity occurs at t = −1, i.e. at

R∗ =

√
−
2πcα

3
.
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Apparantly, some sort of instability develops at the scales < R∗,
and it seems important to understand the mechanism behind this

instability. Anyway, it seems that the flow Aα originating from UV

complete A0 is not UV complete in usual QFT sense.

It is likely that the singularity at finite R∗ signals breakdown of

”local structure”. One might think that the ”bad” short distance

behavior, including the problem with locality, is related to too fast

high energy growth of the scattering phase

δ = −iα sinh θ ∼ −iαE2
CM .

(normally disapproved in QFT). But arguments exist that the phe-

nomenon might be of different, and more general, nature.

The arguments are based on interesting extension of the notion

of (T T̄ ) flow, which exists in the special case of integrable QFT.
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Integrable QFT (IQFT)

One of the common properties of all known IQFT is the presence

of an infinite set of higher-spin local Integrals of Motion (IM)

Ps =
1

2π

∫
C

Ts+1(z) dz +Θs−1(z) dz̄

P̄s =
1

2π

∫
C

T̄s+1(z) dz̄ + Θ̄s−1(z) dz

where (Ts+1,Θs−1) and (T̄s+1, Θ̄s−1) are components of local cur-

rents which satisfy the continuity equations

∂z̄Ts+1(z) = ∂zΘs−1(z) , ∂zT̄s+1(z) = ∂z̄Θ̄s−1(z) .

The index s (associated with the Lorentz spin of the IM) runs

certain subset {s} ⊂ Z+, characteristic of the IQFT. The IM all

commute

[Ps, Ps′] = [Ps, P̄s′] = [P̄s, P̄s′] = 0 .
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From these continuity equations, exactly as in the case of the

Energy-Momentum tensor, one can derive the relations

Ts+1(z)T̄s−1(z
′)−Θs−1(z)Θ̄s−1(z

′) = Xs(z
′) + derivatives ,

which define, up to derivatives, the scalar fields Xs(z) of exact di-

mensions 2s. Thus, it defines Xs as vectors in TΣ|QFT . Moreover,

it can be shown that the infinitesimal deformations

A → A+
∑

s∈{s}
δαs

∫
Xs(z) d

2z

preserves all the IM Ps, P̄s. Starting from some IQFT A0, one can

integrate the infinitesimal deformations into infinite-dimensional

subspace ΣInt ⊂ Σ, with local coordinates αs, so that

Xs ∈ TΣInt|IQFT .

Thus, in the integrable case, the notion of (T T̄ ) flow can be

extended to an infinite-dimensional ”flow” in αs.
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If IQFT is massive, it can be uniquely associated with a factorizable

S-matrix. The full S-matrix is expressed in terms of the

2 → 2 amplitude Ŝ(θ) , θ = θ1 − θ2

(can be an operator in the particle’s ”flavor” spaces). The lat-

ter satisfies a number of general conditions (unitarity, analytic-

ity/crossing, bootstrap, Yang-Baxter equation). The conditions

fix Ŝ(θ) up to the ”CDD factor”, i.e. leaves the ambiguity

Ŝ(θ) → Ŝ(θ)Φ(θ) ,

where the factor Φ is to satisfy{
Φ(θ) = Φ(iπ − θ)

Φ(θ)Φ(−θ) = 1

}
⇒ Φ(2πi+ θ) = Φ(θ) ,

plus possibly additional constraints from the bound-state structure

(the bootstrap conditions).
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Formal but general representation

Φ(θ) = exp
{
− i

∑
s∈{s}

αs sinh(sθ)
}

(converges for sufficiently small θ, and defined by analytic contin-

uation beyond that domain). Here s runs positive integers, but

the bootstrap conditions limit the admitted values to some infinite

subset {s} ⊂ Z+, which always coincides with the set of spins of

the local IM Ps. The curve {αs = 0, s > 1;α1 = α} reduces to the

(T T̄ ) flow. Generally

Infinitesimal CDD

deformations of Ŝ
↔

{Xs} deformations

of AIQFT

If only finitely many αs are involved, the above scattering phase

has even worse high energy behavior. However, generic solution

for the CDD factor does not need to have ”bad” high-energy limit.
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Alternative representation of generic CDD factor if (a compacti-

fication of) the form

Φ(θ) =
N∏

p=1

Bp − i sinh θ

Bp + i sinh θ
, {B} = ∪N{Bp} .

Note that for finite N such CDD factors have normal high energy

behavior.

It is expected that, just as in Σ itself, majority of points in ΣInt

do not define UV complete QFT, with local structure and all. On

the other hand, as was observed, all elements of ΣInt are in corre-

spondence with factorizable S-matrices. S-matrix determines, in

principle, all physical content of the theory, and no UV cutoff needs

to be introduced. Then, how the Landau-Abrikosov-Khalatnikov

phenomenon shows up in the S-matrix approach?

Consider again the ground state in a finite size geometry of a

cylinder of circumference R. In integrable theories, given Ŝ(θ),

one can systematically compute the ground state energy Evac(R)

using the ”Thermodynamic Bethe Ansatz” (TBA) equation.
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TBA is a device which, with the input of Ŝ(θ), computes (in most

cases numerically) the vacuum energy Evac(R),

TBA : Ŝ(θ) → Evac(R) .

Then one can taste the behavior of Evac(R) for arbitrary CDD

factor Φ(θ). Technically, one can start with the product forms of

the CDD factors, with small number N of the CDD factors, and

then go up in N .

No systematic analysis was ever done, to the best of my knowl-

edge. However, preliminary calculations of this sort was done

in early 90th by Al. Zamolodchikov, inspired by the ”staircase

model”. Several sample CDD factors were tested (with limited

number of factors). The results could be summarizes as follows:

Unless the parameters Bp are fine-tuned to special values where

UV complete behavior is observed (e.g. the ”staircase model”),

the function Evac(R) develops a singularity at some finite R∗ ,
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R

E

Moreover, high precision calculation at R close to R∗ reveals that

in all cases the singularity is a square root branching point.

• These universal character of the singularity suggests the common

mechanism of developing of instability. Note that solution for the

(T T̄ ) flow exhibits the same singularity.

• Since the finite N CDD do not have abnormal high-energy be-

havior, it is unlikely that the UV problem is related to the too

fast growth of the scattering phase, and probably has much more

general nature.
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Semiclassical analysis:

Some insight can be gained in the case when

• A0 = CFT .

• c → ∞, so that T, T̄ are classical fields.

I assume that (i) The ground state is determined by some classical

configuration Tcl(z), T̄cl(z), and (ii) Tcl(z) and T̄cl(z) are constants,

independent of z. In the following discussion I drop the subscript

cl under T, T̄ .

Generally, the currents Ts+1, s = 2n− 1 are polynomials in T and

its derivatives,

Ts+1 = Tn + a1 T
n−3(T ′)2 + ... ,

and when the classical configuration is constant, the derivatives

can be dropped, so that

T2n = Tn , X2n−1 = (T T̄ )n .
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Therefore, general Xs-deformed action (for the purpose of the

ground state calculation) can be replaced by

A = ACFT +
∞∑

n=1

α2n−1

∫
(T T̄ )n d2z = ACFT +

1

α

∫
U(α2 T T̄ ) d2z

where I wrote α2n−1 = α2n−1Cn with dimensionless Cn, the Taylor

coefficients of U . When αs are finite, the currents Ts+1,Θs−1, etc,

receive α-dependent corrections, but clearly for constant T, T̄ this

structure is preserved.

Now, introducing the auxiliary fields µ, µ̄, one can further replace

the above action with

Aµ −
4

α

∫
W (µµ̄) d2z , Aµ = ACFT +

1

π

∫
(Tµ+ T̄ µ̄) d2z ,

where W (µµ̄) is the double (in T and T̄ ) Legendre transform of U .

For constant µ, µ̄

⟨ e−Aµ⟩CFT = e−EµL ,
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Eµ = −
πc

6R

[
1

1+ µ
+

1

1+ µ̄
− 1

]
,

where I assumed the geometry of a cylinder of the circumference
R and the length L. Finally, the ground state energy is obtained
by minimizing the function

E(µ, µ̄) = −
R

α

[
t

1+ µ
+

t

1+ µ̄
− t+W (µµ̄)

]
with respect to µ and µ̄. Here again

t =
2πcα

3R2
.

The problem deserves systematic analysis with different forms of
W , which is under way. However, it is possible to identify W
associated with the (T T̄ ) flow. It turns out

WT T̄ flow(µµ̄) =
µµ̄

1− µµ̄
.

With this form the above minimization problem yields the vacuum
energy

Evac = −
R

2α

(√
1+ t− 1

)
,
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which is exactly our result for the (T T̄ ) flow from the Burgers

equation.

It is interesting to observe the mechanism behind the singularity

formation in this model. Looking again at the energy function

E(µ, µ̄) = −
R

α

[
t

1+ µ
+

t

1+ µ̄
− t+

µµ̄

1− µµ̄

]
we observe that it has two parts: the ”CFT part” which depends

on µ and µ̄ separately, and the ”deformation term”, the function

of the product µµ̄ only. The singularity at µµ̄ = 1 divides the

configuration space into two distinct domains,

Min : µµ̄ < 1 and Mout : µµ̄ > 1 ,

separated by an infinite ”barrier”.

����

��
��
��
��

µ µ = 1

Μ in Μ out

µ

µ = −1
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It is natural to assume that the relevant domain is Min, since it

is the one that contains the point (µ, µ̄) = 0, the saddle point at

α = 0. Then, obviously, with positive α the energy function is

unbounded from below in the Min at any R, suggesting that at

α > 0 the theory is not defined as the path integral.

At α < 0, instead, the W -term is bounded from below in Min, and

it grows indefinitely as one approaches the ”boundary”. However,

the other terms are singular at special point (µ, µ̄) = (−1,−1) on

the boundary, and diverge to −∞ as one approaches this point

from Min. Competition of these two term makes E(µ, µ̄) bounded

from below at R > R∗, but it looses the lower bound at R < R∗.
Thus, at R < R∗ the theory is unlikely to have a ground state.

It would be important to analyze fluctuations over this classical

solutions, in particular understand mechanism of decay at R < R∗.
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In general semiclassical models, it is tempting to explore various

types of UV behavior which emerges under different choices of W .

However, it is important to understand how reliable the leading

classical analysis is. Also, it is not yet clear how the classical

description in terms of the ”potential” W relates to the realization

via the CDD factor.
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STOP
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Happy Birthday IM & Many Happy Returns!
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