Quantization of Hydrodynamics:
Hydrodynamics and Gravity
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QUANTIZATION OF HYDRODYNAMICS

Hydrodynamics is the only remaining Hamiltonian system defying quantization

Intractable problem?

Nature confronts us with with experimentally accessible quantum ideal fluids:
(i) superfluid helium,;

(ii) electronic fluid in the FQH regime,
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2D IDEAL HYDRODYNAMICS: EULER-HEMHOLTZ

Fluid is incompressible V-u=0,
Vorticity w=Vxu,
Euler equation Du=-Vp
Material derivative D=8 +u-v
Helmholtz equation D,w =0 vorticity is frozen into the flow
Conservation Law: o= —eikakvj (uiuj)

traceless part of momentum flux tensor
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QUANTUM CORRECTIONS: REYNOLDS

Conservation Law:

w = _Eikakv]' (uin)

Quantum corrections
(&) = €33V {u;) =0
Quantum stress (Reynolds stress)
(uiuj> = (ui)(uj> =Ty
Quantum correction to the Helmholtz equation
Dt<(1)) = eikaijTij

The problem is to compute the quantum stress in terms of vorticity

T; ({w)) = _«uiuj»

5/23



CHIRAL FLOW

All vortices (or vorticity patches) are sign-like

w>0

In this case the quantum Reynolds tensor (up to divergence-free part) could be
determined exactly as a local function of vorticity T(w)

In complex notations

T =Ty, — Ty, — 2T,
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GRAVITATIONAL ANOMALY: POLYAKOV

1 —=(3,1 2
= San (8 0g w (8 ogw))

Schwarzian of a metric
ds? = w|dz]?, w>0.

Curvature of the metric
Z =—w 'Alogw

Quantum Helmholtz equation

Dw=g=VRxVw.

Quantum Euler equation

h
u+(u-V)u+Vp=96—n%XAu+...
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HYDRODYNAMICS, RIEMANNIAN GEOMETRY AND QUANTUM GEOMETRY

Correspondence: Chiral flows <= Riemannian geometry

Positive vorticity 2-form wi = Gy — Gu; = ejw, ©>0

Kéhler structure wdzdz

Measure D[vorticity] <« JD [Riemann metric]

Quantum chiral flows <«— Quantum gravity
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CHIRAL FLOWS

Chiral flows: all vortices are sign-like

w>0

Examples of chiral flows (classical):

- tornado, hurricane, storms;
- Red Spot of Jupiter;

- Onsager clusterization




QUANTUM CHIRAL FLOWS

. . . TEOPS
- Rotating superfluid helium; CREPXTEKYYECTUA
- Fractional quantum Hall effect. |
|
Correspondence between rotating

e .
n, = —B, number of atoms=number of magnetic flux quanta;

20 .
n, = T number of vortices=number of electrons;

1072 superfluid helium,

filling fraction =
1/3 FQHE.

Q = frequency of rotation.
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RELABELING SYMMETRY

Dw = 5=VRXVw

Z =—w 'Alogw

Fundamental Symmetry of fluids:

Relabeling symmetry (invariance with respect to diffeomorphisms);

Relabeling symmetry uniquely determines the quantum correction.
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REGULARIZATION AND RELABELING SYMMETRY
Diw=(0,+u-V)w=0;
o k
w=—€x0"V; (uiuj).
Problem: regularization of the advection term:

Point splitting

lim (ulrfe u|r+e)
e—0

generally does not respect the relabeling symmetry

UV cut-off depends on the flow
e[u]
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HAMILTONIAN, POISSON, LANDAU

1
Fluid dynamics is Hamiltonian H= 5 f u? dv,

Poisson brackets (Landau 1941) {w(r), w()} = (V, x V,.) &(r)5,,
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ARNOLD: AREA PRESERVING DIFFEOMORPHISMS

Lie-Poisson algebra sdiff:

{o@), o)} =(V, x V. )o(r)5,,

w(r)= Zeik'rwk

k

{(,()k, Cl)k/} = (k X k/)wk+k’
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QUANTIZATION OF THE ALGEBRA OF AREA PRESERVING DIFFEOMORPHISMS

1
- Quantization: {w, w} — s [w, w],
i

- Lie algebra: area preserving diffeomorphisms SDiff

[Q)k, C()k/] =ik (k X k/) Wik

- Fluid dynamics is the action of the group of SDiff

- Flows are points of coadjoint orbits of SDiff

Problem:
- Representations of SDiff are not known (despite many attempts)
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KIRCHHOFF

Vortices form the finite dimensional representation of SDiff

Circulation of vortices in quantum fluids is quantized

N
w= Z [6(z—2;)
i=1
Poisson brackets

{z;, Zj} = 2(1—‘1')_151']'

Kirchhoff Hamiltonian
H==) TTlogls—x
i#j

. : L
7. = L i
%= o Zj#i 7% "
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PATHLINES

The choice of Lagrangian coordinates:
pathlines of fluid particles : D)?t o~ fAction

. . L
pathlines of vortices : Dz, Dz, e~ rAction

J
J
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CHIRAL FLOW

Large number of same sense vortices
I=T=2nh

Vorticity is the number of vortices:

. number of vortices
Fraction: v=

number of atoms

T 2
Z. =g [Z~ Z-] =2V£ O e 3
l i’ v Y Observed vortices in He*

Quantum vorticity operator

” i i
W = elk'w(r)d2r=Ze 2K ezl

i
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DEFORMATIONS OF SDiff

Quantum vorticity operator

Sine algebra: deformation of SDiff(T?)

[wi, W] = e

Structure constants

A (kx k’)
e = 2ie\¥aJ sin
47N,

What is the algebra of the stress

T = _Z ei(k+k/)~r(kk/)—1wkwk/
k
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DEFORMATIONS OF SDiff AND VIRASORO-BOTT COCYCLE

h
{(J)k, C()k/} - [C()k, (,L)k/] = €k’ Wik

KK kxK
e =ik x K X oiel#w) sin( )
’ 47N,

Two deformation parameters: h—0, N—->oo

v’ N—> oo, 1—0; Nh=fixed

Virasoro-Bott cocycle

T(x)=— Y (z—2) "L,

c
[L,, L,]=Mm—m)L 1 + D

=1
(Tl3 - n)5n+m,0'
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HEIZENBERG AND SCHROEDINGER

Heizenberg equations

. r ) ,
zi:%Zz.—z., [Zi, Z]]:va 51]
A

Schroedinger equation (stationary fow)

%;|0) = —i0z;|0) = (T'/27i)3, |0)

#vortices
0) = 2. —Z. 1/v’ V= ——
10) l_[( i=%) #atoms
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STOCHASTIC APPROACH TO QUANTIZATION

Euler equation
u+w-Vi(u=—Vp, V-u=0

Kirchhoff Equation

L . i I
u(z) = Z _l , 5= o —.
— 32—z Tz =g
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STOCHASTIC APPROACH TO QUANTIZATION

Stochastic Kirchhoff equation: noise acting on vortices (not on fluid)

viscosity E[dB;dB;]|= v5;dt
This leads to Navier-Stokes equation
u+w-V)u+Vp=vAu+...
“Symplectic noise”: non-dissipative noise
odd-viscosity E[dB;dB;] = 2in5;dt

Non-dissipative stochastic flows equivalent to quantization:

h
u+(u-V)u+Vp=96—n§‘Z><Au+...
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