Quantization of Hydrodynamics: Hydrodynamics and Gravity

P. Wiegmann

Khalatnikov Centennial

QUANTIZATION OF HYDRODYNAMICS

Hydrodynamics is the only remaining Hamiltonian system defying quantization Intractable problem?

Nature confronts us with with experimentally accessible quantum ideal fluids:

- (i) superfluid helium;
- (ii) electronic fluid in the FQH regime,

2D IDEAL HYDRODYNAMICS: EULER-HEMHOLTZ

$$\nabla \cdot u = 0,$$

$$\omega = \nabla \times u,$$

$$D_t \mathbf{u} = -\nabla p$$

Material derivative

$$D_t = \partial_t + u \cdot \nabla$$

Helmholtz equation

$$D_t\omega=0$$

vorticity is frozen into the flow

Conservation Law:

$$\dot{\omega} = -\epsilon_{ik}\partial^k \nabla_j \left(u_i u_j\right)$$

traceless part of momentum flux tensor

QUANTUM CORRECTIONS: REYNOLDS

Conservation Law:

$$\dot{\omega} = -\epsilon_{ik}\partial^k \nabla_j (u_i u_j)$$

Quantum corrections

$$\langle \dot{\omega} \rangle = \epsilon_{ik} \partial^k \nabla_i \langle u_i u_i \rangle = 0$$

Quantum stress (Reynolds stress)

$$\langle u_i u_j \rangle = \langle u_i \rangle \langle u_j \rangle - T_{ij}$$

Quantum correction to the Helmholtz equation

$$D_t \langle \omega \rangle = \epsilon_{ik} \partial^k \nabla_i T_{ij}$$

The problem is to compute the quantum stress in terms of vorticity

$$T_{ii}(\langle \omega \rangle) = -\langle \langle u_i u_i \rangle \rangle$$

CHIRAL FLOW

All vortices (or vorticity patches) are sign-like

$$\omega > 0$$

In this case the quantum Reynolds tensor (up to divergence-free part) could be determined exactly as a local function of vorticity $T(\omega)$

In complex notations

$$T = T_{xx} - T_{yy} - 2iT_{xy}$$

GRAVITATIONAL ANOMALY: POLYAKOV

$$T = \frac{\hbar}{24\pi} \left(\partial_z^2 \log \omega - \frac{1}{2} (\partial_z \log \omega)^2 \right)$$

Schwarzian of a metric

$$ds^2 = \omega |dz|^2, \quad \omega > 0.$$

Curvature of the metric

$$\mathcal{R} = -\omega^{-1} \Delta \log \omega$$

Quantum Helmholtz equation

$$D_t \omega = \frac{\hbar}{96\pi} \nabla \mathcal{R} \times \nabla \omega.$$

Quantum Euler equation

$$\dot{u} + (u \cdot \nabla)u + \nabla p = \frac{\hbar}{96\pi} \mathcal{R} \times \Delta u + \dots$$

HYDRODYNAMICS, RIEMANNIAN GEOMETRY AND QUANTUM GEOMETRY

Correspondence: Chiral flows \longleftrightarrow Riemannian geometry

Positive vorticity 2-form
$$\omega_{ij} = \partial_i u_j - \partial_j u_i = \epsilon_{ij} \omega, \quad \omega > 0$$

Kähler structure $\omega dz d\bar{z}$

Measure
$$\int D[\text{vorticity}] \longleftrightarrow \int D[\text{Riemann metric}]$$

Quantum chiral flows \longleftrightarrow Quantum gravity

CHIRAL FLOWS

Chiral flows: all vortices are sign-like

$$\omega > 0$$

Examples of chiral flows (classical):

- tornado, hurricane, storms;
- Red Spot of Jupiter;
- Onsager clusterization

QUANTUM CHIRAL FLOWS

- Rotating superfluid helium;
- Fractional quantum Hall effect.

Correspondence between rotating

 $n_{\text{A}} = \frac{e}{h}B$, number of atoms=number of magnetic flux quanta; $n_{\text{v}} = \frac{2\Omega}{\Gamma}$, number of vortices=number of electrons; $v = \frac{n_{\text{v}}}{n_{\text{A}}}$ filling fraction = $\begin{cases} 10^{-3} & \text{superfluid helium,} \\ 1/3 & \text{FQHE.} \end{cases}$ $\Gamma = \frac{h}{m}$, $\Omega = \text{frequency of rotation.}$

RELABELING SYMMETRY

$$D_t \omega = \frac{\hbar}{96\pi} \nabla \mathcal{R} \times \nabla \omega$$

$$\mathcal{R} = -\omega^{-1} \Delta \log \omega$$

Fundamental Symmetry of fluids:

Relabeling symmetry (invariance with respect to diffeomorphisms);

Relabeling symmetry **uniquely** determines the quantum correction.

REGULARIZATION AND RELABELING SYMMETRY

$$D_t \omega \equiv (\partial_t + u \cdot \nabla) \omega = 0;$$

$$\dot{\omega} = -\epsilon_{ik} \partial^k \nabla_j (u_i u_j).$$

Problem: regularization of the advection term:

Point splitting

$$\lim_{\epsilon \to 0} \; (u|_{r-\epsilon} \; u|_{r+\epsilon})$$

generally does not respect the relabeling symmetry

UV cut-off depends on the flow

$$\epsilon[\mathbf{u}]$$

HAMILTONIAN, POISSON, LANDAU

Fluid dynamics is Hamiltonian
$$H = \frac{1}{2} \int u^2 dV$$
,

Poisson brackets (Landau 1941)
$$\{\omega(r), \omega(r')\} = (\nabla_r \times \nabla_{r'}) \omega(r) \delta_{rr'}$$

Lie-Poisson algebra sdiff:

$$\{\omega(r), \ \omega(r')\} = (\nabla_r \times \nabla_{r'})\omega(r)\delta_{rr'}$$
$$\omega(r) = \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}\omega_{\mathbf{k}}$$

$$\{\omega_{\mathbf{k}}, \ \omega_{\mathbf{k}'}\} = (\mathbf{k} \times \mathbf{k}')\omega_{\mathbf{k}+\mathbf{k}'}$$

QUANTIZATION OF THE ALGEBRA OF AREA PRESERVING DIFFEOMORPHISMS

- Quantization: $\{\omega, \omega\} \rightarrow \frac{1}{i\hbar} [\omega, \omega],$
- Lie algebra: area preserving diffeomorphisms SDiff

$$[\omega_{\mathbf{k}}, \omega_{\mathbf{k}'}] = i\hbar (\mathbf{k} \times \mathbf{k}') \omega_{\mathbf{k}+\mathbf{k}'}$$

- Fluid dynamics is the action of the group of **SDiff**
- Flows are points of coadjoint orbits of SDiff

Problem:

- Representations of **SDiff** are not known (despite many attempts)

KIRCHHOFF

Vortices form the finite dimensional representation of SDiff

Circulation of vortices in quantum fluids is quantized

$$\omega = \sum_{i=1}^{N} \Gamma_i \delta(z - z_i)$$

Poisson brackets

$$\{\bar{z}_i, z_j\} = 2(\Gamma_i)^{-1}\delta_{ij}$$

KIrchhoff Hamiltonian

$$H = -\sum_{i \neq j} \Gamma_i \Gamma_j \log |z_i - z_j|$$

$$\dot{\bar{z}}_i = \frac{\mathrm{i}}{2\pi} \sum_{j \neq i} \frac{\Gamma_j}{z_i - z_j}.$$

PATHLINES

The choice of Lagrangian coordinates:

pathlines of fluid particles :

pathlines of vortices:

$$\int D\vec{X}_t \ e^{-\frac{i}{\hbar} \text{Action}}$$
$$\int Dz_t D\bar{z}_t \ e^{-\frac{i}{\hbar} \text{Action}}$$

CHIRAL FLOW

Large number of same sense vortices

$$\Gamma_i = \Gamma = 2\pi\hbar$$

Vorticity is the number of vortices:

Fraction:
$$v = \frac{\text{number of vortices}}{\text{number of atoms}}$$

$$\bar{z}_i = z_i^{\dagger}, \quad [\bar{z}_i, z_j] = 2\nu \ell^2 \delta_{ij}$$

Observed vortices in He4

Quantum vorticity operator

$$\omega_k = \int e^{i\mathbf{k}\cdot\mathbf{r}}\omega(r)d^2r = \sum_i e^{-\frac{i}{2}kar{z}_i^\dagger}e^{-\frac{i}{2}ar{k}z_i}$$

DEFORMATIONS OF SDiff

Quantum vorticity operator

$$\omega_k = \sum_i e^{-\frac{i}{2}kar{z}_i^\dagger} e^{-\frac{i}{2}ar{k}z_i}, \quad [ar{z}_i, \ z_j] = 2\nu\ell^2\delta_{ij}$$

Sine algebra: deformation of $SDiff(T^2)$

$$[\omega_k, \ \omega_{k'}] = e_{kk'}\omega_{k+k'}$$

Structure constants

$$e_{kk'} = 2ie^{\left(\frac{\mathbf{k}\cdot\mathbf{k'}}{4\pi N_{A}}\right)}\sin\left(\frac{\mathbf{k}\times\mathbf{k'}}{4\pi N_{A}}\right)$$

What is the algebra of the stress

$$T = -\sum_{k} e^{i(k+k')\cdot r} (\mathbf{k}\mathbf{k}')^{-1} \omega_{\mathbf{k}} \omega_{\mathbf{k}'}$$

DEFORMATIONS OF **SDiff** AND VIRASORO-BOTT COCYCLE

$$\{\omega_k, \ \omega_{k'}\} \stackrel{\hbar}{\rightarrow} [\omega_k, \ \omega_{k'}] = e_{kk'}\omega_{k+k'}$$

$$e_{k,k'} = i\mathbf{k} \times \mathbf{k'} \xrightarrow{N} 2ie^{\left(\frac{\mathbf{k} \cdot \mathbf{k'}}{4\pi N_{\rm A}}\right)} \sin\left(\frac{\mathbf{k} \times \mathbf{k'}}{4\pi N_{\rm A}}\right)$$

Two deformation parameters: $\hbar \to 0$, $N \to \infty$

$$\sqrt{N} \rightarrow \infty$$
, $\hbar \rightarrow 0$; $N\hbar = \text{fixed}$

Virasoro-Bott cocycle

$$T(z) = -\sum_{n} (z - z')^{-n-2} L_n$$

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c=1}{12}(n^3-n)\delta_{n+m,0}.$$

HEIZENBERG AND SCHROEDINGER

Heizenberg equations

$$\dot{ar{z}}_i = rac{\mathrm{i}}{2\pi} \sum_{j
eq i} rac{\Gamma}{z_i - z_j}, \quad [ar{z}_i, \ z_j] = 2
u \ell^2 \delta_{ij}$$

Schroedinger equation (stationary fow)

$$\dot{\bar{z}}_i|0\rangle = -\mathrm{i}\Omega\bar{z}_i|0\rangle = \nu(\Gamma/2\pi\mathrm{i})\partial_{z_i}|0\rangle$$

$$\left(\nu\partial_{\mathbf{z}_i}-\sum_{j\neq i}\frac{1}{\mathbf{z}_i-\mathbf{z}_j}\right)|0\rangle=0.$$

$$|0\rangle = \prod_{j>j} (z_i - z_j)^{1/\nu}, \quad \nu = \frac{\text{#vortices}}{\text{#atoms}}$$

STOCHASTIC APPROACH TO QUANTIZATION

Euler equation

$$\dot{u} + (u \cdot \nabla)u = -\nabla p, \quad \nabla \cdot u = 0$$

Kirchhoff Equation

$$\mathbf{u}(z) = \sum_i \frac{\Gamma_i}{z - z_i}, \qquad \dot{\bar{z}}_i = \frac{\mathrm{i}}{2\pi} \sum_{j \neq i} \frac{\Gamma_j}{z_i - z_j}.$$

STOCHASTIC APPROACH TO QUANTIZATION

Stochastic Kirchhoff equation: noise acting on vortices (not on fluid)

$$d\bar{z}_i = \frac{i}{2\pi} \sum_{j \neq i} \frac{\Gamma_j dt}{z_i - z_j} + d\bar{B}_i$$

viscosity
$$\mathbb{E}\left[d\bar{B}_idB_i\right] = \nu \delta_{ij}dt$$

This leads to Navier-Stokes equation

$$\dot{u} + (u \cdot \nabla)u + \nabla p = \nu \Delta u + \dots$$

"Symplectic noise": non-dissipative noise

odd-viscosity
$$\mathbb{E}\left[dB_idB_j\right] = 2i\hbar\delta_{ij}dt$$

Non-dissipative stochastic flows equivalent to quantization:

$$\dot{u} + (u \cdot \nabla)u + \nabla p = \frac{\hbar}{96\pi} \mathcal{R} \times \Delta u + \dots$$