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Introduction

Motivation

FQHE as exotic isotropic parity breaking fluid

Isotropic fluids with broken parity in 2d

Manifestation of odd/Hall viscosity in the bulk and on the boundary

Variational and Hamiltonian formulation of fluid dynamics

Role of topological terms in boundary conditions
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Introduction

Isotropic fluids with broken parity

Rotating He-II, plasma in magnetic field, He3-A films

Quantum Hall fluids (Gromov, AA ’13-’15)

Vortex fluids (Wiegmann, AA, ’14)

Chiral active fluids (Souslov, Banerjee, Vitelli, AA, ’17)

e 

e 

e 

e = electron 

= magnetic field 

Two-dimensional fluids!
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Introduction

Introduction: Hydrodynamics

Separation of scales and emergence

Local equilibration

Symmetries and conservation laws, universality

Gradient expansion

Hydrodynamics

Role of symmetries: conservation laws + restrictions on constitutive relations
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Introduction

Remark: Macroscopic hydrodynamics

Typically hydrodynamics is derived from microscopic theory, e.g., using kinetic
equation

However, one can also start with hydrodynamic equations and average them over
even bigger scales

This approach is known as “macroscopic hydrodynamics”

Early example: Hall-Vinen-Bekarevich-Khalatnikov (HVBK) hydrodynamics (Hall,
Vinen ’56, Hall, ’58, Mamaladze, Matinyan ’60, Bekarevich, Khalatnikov ’61 (review
Sonin)

Collection of vortices in rotating He-II is considered as an effective medium obeying
HVBK hydrodynamics
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Introduction

Example: Barotropic fluid

Two conserved quantities ρ and pi

∂tρ+ ∂iji = 0 mass conservation

∂tpi + ∂jΠij = 0 momentum conservation

ji - mass current, Πij momentum flux tensor, should be expressed in terms of ρ, pi and
gradients using symmetries (isotropy, Galilean invariance, . . . ).

ji = ρvi + . . .

pi = ρvi + . . . constitutive relations

Πij = pivj + pδij + . . . = pivj − Tij
p = p(ρ)

Zero-order barotropic fluid dynamics. Continuity and Euler equations for ρ and vi.
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Fluid dynamics with odd viscosity and odd surface waves

Barotropic fluid: first order hydro

Continuity equations (no external forces):

∂tρ+ ∂iji = 0 ,

∂tpi + ∂j(pivj) = ∂jTij .

Constitutive relations might have terms linear in gradients

ji = ρvi +A∂∗i ρ , pi = ρvi , p = p(ρ) ,

Tij = −pδij + ηe(∂ivj + ∂jvi − δij∂kvk) + ηbδij∂kvk +Gωδij + ηo(∂iv
∗
j + ∂∗i vj)

shear viscosity bulk viscosity odd pressure odd viscosity

a∗i ≡ εijaj – rotation by 90◦ clockwise – breaks parity!
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Fluid dynamics with odd viscosity and odd surface waves

Hall (odd) viscosity

a∗i ≡ εijaj – rotation by 90◦ clockwise – breaks parity!

T eij = νeρ(∂ivj + ∂jvi) T oij = νoρ(∂iv
∗
j + ∂∗i vj)

non-dissipative (dispersive)

v

T o
ij = ⌫0(@iu

⇤
j + @⇤

j ui)

T o
ij = ⌫0(@iu

⇤
j + @⇤

j ui)

Dissipative

T e
ij = ⌫e(@iuj + @jui)

v

T e
ij = ⌫e(@iuj + @jui)

Avron, Seiler, Zograf, 1995; Avron, 1998
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Fluid dynamics with odd viscosity and odd surface waves

Measuring Hall viscosity

→
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Fluid dynamics with odd viscosity and odd surface waves

We consider fluid dynamics of

two-dimensional fluid

compressible

isotropic

parity breaking

non-vanishing Hall (odd) viscosity

no external magnetic field or Coriolis force
→ no gap in the bulk
→ not directly applicable to Quantum Hall fluids

Goals: variational principle, Hamiltonian, boundary dynamics
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Fluid dynamics with odd viscosity and odd surface waves

Compressible hydro with νo

Continuity: ji = ρvi
∂tρ+ ∂i(ρvi) = 0

Momentum conservation: pi = ρvi
∂t(ρvi) + ∂j(ρvivj) = ∂jTij

No dissipation: Tij = −pδij + νoρ(∂∗i vj + ∂iv
∗
j )

Boundary conditions
at y = h(x, t):

(
∂Γ

∂t
− v

)
n

= 0 , Tijnj

∣∣∣
Γ

= 0 .

Incompressible limit: dp
dρ = c2

s →∞.
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Fluid dynamics with odd viscosity and odd surface waves

Contents of the talk

Preliminaries: fluid dynamics, variational principle, free surface etc.

Fluid dynamics with odd viscosity and odd surface waves

Variational principle and Hamiltonian formulation of hydro with odd viscosity

Free surface
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Preliminaries

Hamiltonian structure of barotropic fluid

Poisson’s brackets (notations ρ = ρ(x), ρ′ = ρ(x′) etc.){
ρ, ρ′

}
= 0{

ρ, v′i
}

= ∂iδ(x− x′){
vi, v

′
j

}
= −1

ρ
(∂ivj − ∂jvi)δ(x− x′)

Hamiltonian generating equations ∂tq = {H, q}:

H =

∫
dx

[
ρv2

2
+ ε(ρ)

]
Equations of motion (p = ρερ − ε)

∂tρ+ ∂i(ρvi) = 0 , ∂tvi + (vj∂j)vi = −ρ−1∂ip .

Landau, ’41; Dzyaloshinskii, Volovick, ’79
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Preliminaries

Casimirs

Infinitely many integrals of motion in 2d hydro:

In =

∫
dx ρ

(
ω

ρ

)n
, n = 0, 1, 2, . . .

Conserved for any Hamiltonian!

{In, ρ} = 0 , {In, vi} = 0 .

Degeneracy of Poisson structure, not symmetry of the Hamiltonian. In — Casimirs. This
degeneracy is an obstacle to getting variational principle.

{p, q} = κ , H(p, q) −→ L(q, q̇) =
1

κ
pq̇ −H(p, q)

Problem if κ is not invertible → symplectic (Hamiltonian) reduction.
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Preliminaries

From Lagrangian to Eulerian description

X(Φ,t)	

Φ x	

Two descriptions:

Lagrangian: xi(Φα, t), ẋi(Φα, t) Relabeling symmetry

Eulerian: vk(xi, t) Φα → Fβ(Φα)

relation: vk(xi, t) = ẋk(Φα, t)
∣∣∣
Φα=Φα(xi,t)
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Preliminaries

Variational principle for fluid dynamics

Action for barotropic fluid dynamics:

S[ρ, θ, α, β, vi] = −
∫
dt

∫
dx

[
ρ

(
u0 + uiv

i − 1

2
viv

i

)
+ ε(ρ)

]

Notations
uµ ≡ ∂µθ + α∂µβ , µ = 0, 1, 2; i = 1, 2.

Relabeling symmetry: α→ α+ f ′(β), θ → θ − f(β).

Variation over vi gives: vi = ui = ∂iθ + α∂iβ, i = 1, 2.
Variation over θ gives: ∂tρ+ ∂i(ρvi) = 0.

Other variations plus algebra give Euler equation (p ≡ ρερ − ε)

∂tvi + (vj∂j)vi = −ρ−1∂ip .
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Preliminaries

Introduction: Free surface boundary conditions

n

s

y

x

y = h(x, t)

Kinematic boundary condition. Fluid particle on a surface Γ remains on a surface.(
∂Γ

∂t
− v

)
n

= 0 or ∂th+ vx∂xh = vy .

Dynamical boundary conditions. Vanishing of stress forces on the boundary.

fi = Tijnj

∣∣∣
Γ

= 0 or Tnn = 0 , Tsn = 0 . two conditions
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Preliminaries

Luke’s variational principle

Consider the action defined for domain y ≤ h(x, t):

S[ρ, θ, α, β, vi] = −
∫
dt

∫
dx

∫ h(x,t)

−∞
dy

[
ρ

(
u0 + uiv

i − 1

2
viv

i

)
+ ε(ρ)

]

Using bulk equations of motion we obtain the following.

Variation over θ at the boundary gives the kinematic boundary condition

Variation over h(x, t) gives: the dynamic boundary condition p
∣∣∣
Γ

= 0 for free surface

As Tij = −pδij the transverse dynamic b.c. is satisfied automatically.

The action encodes both bulk hydro and free surface boundary conditions
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Preliminaries

Remarks on boundary conditions: Free surface

∂tρ+ ∂i(ρvi) = 0 ,

(
∂Γ

∂t
− v

)
n

= 0

∂tpi + ∂j(pivj) = ∂jTij , Tijnj

∣∣∣
Γ

= 0

Constitutive relations. a∗i ≡ εijaj
pi = ρvi , p̃i = ρvi + s∂∗i ρ ,

Tij = −pδij , T̃ij = −
(
p− s

2
ρω
)
δij −

s

2
ρ(∂iv

∗
j + ∂∗i vj)−

s

2
ρ(∂kvk)εij .

Bulk equations for ρ and vi are identical for both cases but
dynamic boundary conditions are different!

The corresponding actions must differ by boundary terms.
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Preliminaries

Boundary vorticity layer

In the presence of viscosity the solution of surface wave problem cannot be potential
everywhere!

Tangent stress at the boundary due to the boundary motion results in the vorticity at
the boundary.

Oscillating boundary layer forms (similar to Lamb ’32, without Hall viscosity).

Hall viscosity modifies the structure of boundary layer.

Our goal is to write equations for effective dynamics of the boundary assuming that
the boundary layer is very thin in the incompressible limit cs →∞.
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Preliminaries

Boundary vorticity layer

νo/cs ∼ δ � D � λ , ω ∼ DΩcs/νo, ωδ ∼ DΩ

AA, T. Can, S. Ganeshan, G. Monteiro, arXiv:1907.11196

Alexander Abanov (Stony Brook) Odd fluids in action October 20, 2019 22 / 32



Preliminaries

Linear odd surface waves

Re[ω(x, y, t)]

For small k: Ω = −2νok|k|.
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Preliminaries

Chiral Burgers Equation

Weakly nonlinear surface waves for incompressible fluid with odd viscosity are described
by Chiral Burgers Equation AA, T. Can, S. Ganeshan, SciPost Phys. 5, 010 (2018)

ut + 2uux − 2iνouxx = 0

u(x) is a complex function, u(x+ iy) is analytic in the lower half-plane Im (z) = y ≤ 0.

Relation to original variables

u = vx + ivy

∣∣∣
Γ

Dobrokhotov, Maslov, Tsvetkov, ’92; Senouf, Caflisch, Ercolani, ’96
Cf. Kuznetsov, Spector, Zakharov, ’94
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Preliminaries

Applications

chiral wave (left moving)
propagates in the absence of gravity
in linear regime Ω = −2νok

2
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ũ(x,t)

h(x,0.3)

h(x,0.6)

h(x,1.0)

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

x

ũ
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Variational principle with odd viscosity and free surface

Bulk

Parity breaking term, first order in gradients

SM[ρ, θ, α, β, vi] = −
∫
dt

∫
M

d2x
[
ρ
(
u0 + uiv

i − 1
2v

2
i

)
+ ε(ρ)−νovi∂∗i ρ

]

where uµ ≡ ∂µθ + α∂µβ ,

Variation over vi gives vi = ui − νo∂∗i ln ρ.

The action produces equations for θ, ρ, α, β which imply hydrodynamics with

Tij = −pδij + νoρ(∂iv
∗
j + ∂∗i vj) .

The extra term in the action is equivalent (up to boundary terms) to νoρω.
Gives “wrong” boundary conditions, e.g., vtangent = 0.
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Variational principle with odd viscosity and free surface

Boundary

We consider domain M : y ≤ h(x, t) with boundary Γ : y = h(x, t)

The boundary action:

SΓ[ρ̃, φ, h] = −νo
∫
dt

∫
dx
[
ρ̃ hxht + φxφt − 2φt

√
ρ̃(1 + h2

x)
]

with ρ̃(x, t) = ρ(x, h(x, t); t) produces correct dynamic boundary conditions for the fluid
with νo.

Remark: φ-field is needed to make the action boundary reparametrization invariant. It
can be integrated out for the price of non-locality.
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Variational principle with odd viscosity and free surface

Main result: Hydro action with Hall viscosity

The action

S = SM + SΓ

SM[ρ, θ, α, β, vi] = −
∫
dt

∫
M

d2x
[
ρ
(
u0 + uiv

i − 1
2v

2
i

)
+ ε(ρ)−νovi∂∗i ρ

]
SΓ[ρ̃, φ, h] = −νo

∫
dt

∫
dx
[
ρ̃ hxht + φxφt − 2φt

√
ρ̃(1 + h2

x)
]

gives both bulk hydrodynamic equations and free surface boundary conditions for
two-dimensional compressible fluid with odd viscosity.

Remark: Adding temperature or external gauge field to the action is rather
straightforward.

AA, T. Can, S. Ganeshan, G. Monteiro, arXiv:1907.11196
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Variational principle with odd viscosity and free surface

From action to Poisson structure (bulk)

It is straightforward to derive Hamiltonian structure from the action. The (bulk)
symplectic part ρu0 is conventional and we obtain for ρ and ui standard PBs.{

ρ, ρ′
}

= 0 ,
{
ρ, u′i

}
= ∂iδ(x− x′) ,

{
ui, u

′
j

}
= −∂iuj − ∂jui

ρ
δ(x− x′) .

vi = ui − νo∂∗i ln ρ −→ modified brackets for ρ and vi.
Immediate consequence:

In =

∫
dx ρ

(
ωu
ρ

)n
=

∫
dx ρ

(
ω + νo∆ ln ρ

ρ

)n
, n = 0, 1, 2, . . .

are Casimirs of hydro with odd viscosity.
Remark: in external magnetic field ω → ω +B.
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Variational principle with odd viscosity and free surface

From action to Hamiltonian

Remarkably the Hamiltonian for the constructed action is the same:

H =

∫
d2x

[
ρv2

2
+ ε(ρ)

]
.

Only Poisson structure changed!
Few remarks:

Similar situation occurs in the presence of magnetic field or system’s rotation. Odd
viscosity is a higher gradient analogue of those.

Reminds topological terms which do not change stress-energy tensor. However, the
momentum density did change implying non-trivial coupling to time components of
the metric.

Similarly to topological terms odd viscosity does change boundary dynamics in a
profound way.
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Variational principle with odd viscosity and free surface

Conclusions

1 Chiral Burgers equation describing nonlinear boundary dynamics in incompressible
limit is derived for fluid with odd viscosity

2 Few exact solutions of the chiral Burgers equation are obtained

3 Variational principle for incompressible fluid with Hall viscosity and free surface is
constructed

4 A non-trivial boundary term is needed to give correct boundary conditions

5 The odd viscosity terms modify conventional Poisson’s brackets in Hamiltonian
formulation.
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Variational principle with odd viscosity and free surface
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