E_{10} , $K(E_{10})$ and the Standard Model

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut)

Based on joint work with (in various combinations): T. Damour, M. Henneaux, A. Kleinschmidt and K. Meissner

В честь Исаака Марковича Халатникова

по случаю столетнего юбилея

Questions we would like to answer

- General Relativity (GR) and Quantum Theory?
- Resolution of singularities in GR?
- Structure of space-time: discrete, emergent,...?
- Resolution of singularities in QFT?
- UV completion of Standard Model (SM)?
- Why $\mathbf{SU}(3)_c \times \mathbf{SU}(2)_w \times \mathbf{U}(1)_Y$?
- Why three generations of spin- $\frac{1}{2}$ fermions?
- Dark Matter and Dark Energy?

... and most important: is there any way to validate/falsify any of the existing proposals?

This Talk

Far from a finalized proposal, but to point out the possibility that the way the SM gets linked to a Planck scale unified theory of quantum gravity may work in ways completely different from currently popular ideas.

Proposal makes use of several ingredients:

- BKL-type analysis of cosmological singularities
- The $E_{10}/K(E_{10})$ σ -model: an attempt to formulate M theory with *emergent* space-time and matter degrees of freedom
- Beyond, but staying close to, maximal (N=8) supergravity

Main concern: finding *some* way to link these abstract considerations to 'real physics', that is, the SM or a minimal extension thereof, and thereby understand or derive it from a more fundamental theory.

BKL and Spacelike Singularities

For $T \rightarrow 0$ spatial points decouple and the system is effectively described by a continuous superposition of one-dimensional systems \rightarrow effective dimensional reduction to D = 1! [Belinski,Khalatnikov,Lifshitz (1972)]

Habitat of Quantum Gravity

• Cosmological evolution as one-dimensional motion in the moduli space of *d*-geometries [Wheeler, DeWitt,...]

$$\mathcal{M} \equiv \mathcal{G}^{(d)} = \frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}(\Sigma)} = \frac{\{\operatorname{spatial metrics } \mathbf{g}_{mn}(\mathbf{x})\}}{\{\operatorname{spatial diffeomorphisms}\}}$$

- \bullet Formal canonical quantization \rightarrow WDW equation.
- Unification of space-time, matter and gravitation: \mathcal{M} should incorporate matter degrees of freedom in a natural manner (not simply $\mathcal{M} = \mathcal{G}^{(3)} \times \mathcal{M}_{matter}$).
- Can we understand and 'simplify' \mathcal{M} by means of embedding into a group theoretical coset G/K(G)?
- Main conjecture: $G = E_{10}$ and $K(G) = K(E_{10})$
- Fits with conjectured emergence of E_{10} in reduction of maximal supergravity to D = 1. [Julia(1983)]

Hamiltonian Constraint

Hamiltonian constraint (\rightarrow WDW operator)

$$\mathcal{H} = \kappa G_{mn pq}(\mathbf{g}) \Pi^{mn} \Pi^{pq} - \frac{1}{2\kappa} \sqrt{\mathbf{g}} R^{(d)}(\mathbf{g}) + \cdots$$

with DeWitt metric $G_{mn\,pq} = g^{-1/2}(g_{mp}g_{nq}+g_{mq}g_{np}-g_{mn}g_{pq})$. BKL limit: reduce to one spatial point and diagonal metric degrees of freedom $g_{mn}(t) = \delta_{mn} \exp(\beta^m(t))$

$$\mathcal{H}_{\rm red} = G_{mn}\pi^m\pi^n + V_{\rm eff}(\beta)$$

with *Lorentzian* (indefinite) metric G_{mn} on \mathbb{R}^d Effective potential V_{eff} simplifies in near singularity limit

$$V_{\rm eff}(\beta) = \sum_{A} \Theta_{\infty}(w_A(\beta))$$

'Sharp wall potentials' \leftrightarrow wall forms $w_A(\beta) \equiv G_{mn} w_A^m \beta^n$ constrain motion in DeWitt mini-superspace

[Damour, Henneaux, HN: "Cosmological Billiards", CQG20(2003)R145]

The Group Theory Connection

- Identify space of diagonal degrees of freedom with Cartan subalgebra (CSA) of some Lie algebra.
- DeWitt metric on $\{\beta^m\} \equiv$ Cartan Killing metric
- Leading wall forms associated with *simple roots* of some indefinite Kac Moody algebra (KMA)

 $A_{ij} = G^{mn}(w_i)_m(w_j)_n$ ($G_{mn} = \text{DeWitt metric!}$) e.g. KMA = AE_3 for Einstein gravity (D = 4) and KMA = E_{10} for maximal supergravity (D = 11). [Damour,Henneaux, PRL86(2001)4749]

- Cosmobilliards' take place in Weyl chamber of KMA
 ⇒ chaotic oscillations if KMA is *hyperbolic*.
 [Damour,Henneaux,Julia,HN:PLB509(2001)323]
- E₁₀ is maximally extended hyperbolic KMA: contains all simply laced hyperbolic KMAs. [S.Viswanath,0801.2586]

What is E_{10} ?

 E_{10} is the 'group' associated with the Kac-Moody Lie algebra $g \equiv e_{10}$ defined via the Dynkin diagram [e.g. Kac]

Defined by generators $\{e_i, f_i, h_i\}$ and relations via Cartan matrix A_{ij} ('Chevalley-Serre presentation')

$$\begin{array}{ll} [h_i, h_j] &= 0, & [e_i, f_j] = \delta_{ij} h_i, \\ [h_i, e_j] &= A_{ij} e_j, & [h_i, f_j] = -A_{ij} f_j, \\ (\operatorname{ad} e_i)^{1 - A_{ij}} e_j &= 0 & (\operatorname{ad} f_i)^{1 - A_{ij}} f_j = 0. \end{array}$$

 \mathfrak{e}_{10} is the free Lie algebra generated by $\{e_i, f_i, h_i\}$ modulo these relations \rightarrow infinite dimensional as A_{ij} is *indefinite* \rightarrow Lie algebra of *exponential growth* !

A planar slice through the E_{10} root system

[© Teake Nutma (AEI)]

Example: SL(10) level decomposition

• Decomposition w.r.t. SL(10) subgroup in terms of SL(10) tensors \rightarrow *level expansion* [Damour, Hennaux, HN(2002)]

$$\alpha = \ell \alpha_0 + \sum_{j=1}^9 m^j \alpha_j \quad \Rightarrow \quad \mathbf{E}_{10} = \bigoplus_{\ell \in \mathbb{Z}} \mathbf{E}_{10}^{(\ell)}$$

• Up to $\ell \leq 3$ basic fields of D = 11 SUGRA together with their magnetic duals (spatial components)

$\ell = 0 \qquad G_{mn}$	Graviton
$\ell = 1 \qquad A_{mnp}$	3-form
$\ell = 2 \qquad A_{m_1\dots m_6}$	dual 6-form
$\ell = 3 \qquad h_{m_1\dots m_8 n}$	dual graviton

- Analysis up to level $\ell \leq 28$ yields 4 400 752 653 representations (Young tableaux) of SL(10) [Fischbacher,HN:0301017]
- Lie algebra structure (structure constants, etc.) understood only up to $\ell \leq 4$. Also: no matter where you stop it will get even more complicated beyond!

Tantalizing Hints, Persistent Questions

- Recover bosonic multiplets and dynamics of maximal supergravities by appropriately 'slicing' E_{10} .
- E_{10} 'knows all' about supersymmetry \rightarrow may well supersede supersymmetry as a unifying principle!
- Quantum Gravity: old problems in a new guise!

\mathbf{BUT}

- No concrete realization of KMA (after 50 years!)
- Physical significance of higher level representations?
- How is (de-)emergence of space-time realized?
- How is UV completion of SM achieved?

While it may take a long time to resolve these questions there is some progress on another front....

Fermions and $K(E_{10})$

... probably a key issue for further progress...

Important point: maximally supersymmetric theories *not* based on (hypothetical) superextensions of E_n :

- There is no proper superextension of E_n for any n.
- For $D \ge 3$ supergravity fermions transform in maximal compact subgroup $K(E_n) \subset E_{n(n)}$, e.g.
 - $K(E_7) \equiv SU(8)$ fermions \in 8 and 56 $K(E_8) \equiv Spin(16)/Z_2$ fermions \in 16 $_v$ and 128 $_c$
- The associated (double-valued) fermion representations are not 'liftable' to E_n representations
- Expect all of this to remain true for $K(E_{10}) \subset E_{10}$.

What is $K(E_{10})$?

For E_{10} the 'maximal compact' subalgebra is defined as fixed point algebra of the Chevalley involution

$$\omega(e_j) = -f_j$$
, $\omega(f_j) = -e_j$, $\omega(h_j) = -h_j$

together with invariance property $[\omega(x), \omega(y)] = \omega([x, y])$

$$\Rightarrow E_{10} = K(E_{10}) \oplus K(E_{10})^{\perp}, \quad x = \omega(x) \text{ for } x \in K(E_{10})$$

This definition is analogous to the corresponding one for the finite-dimensional case, e.g. $x = \omega(x) \in \mathfrak{so}(n) \subset \mathfrak{sl}(n)$ for $\omega(x) = -x^T$, with corresponding decomposition $\mathfrak{sl}(n) = \mathfrak{so}(n) \oplus \mathfrak{so}(n)^{\perp}$

Consequently, $K(E_{10})$ is generated by $x_i := e_i - f_i = \omega(x_i)$ with Berman-Serre relations

 $\begin{bmatrix} x_i, x_j \end{bmatrix} = 0 \qquad if i and j are non-adjacent$ $\begin{bmatrix} x_i, [x_i, x_j] \end{bmatrix} + x_j = 0 \qquad if i and j are adjacent$

Theorem: each set of $\{x_i\}$ satisfying the above relations provides a realization of $K(E_{10})$. [S.Berman(1989)] But: $K(E_{10})$ is ∞ -dimensional and a very strange beast!

- $K(E_{10})$ has finite-dimensional (unfaithful) representations
- \Rightarrow K(E₁₀) is *not* simple (\equiv has non-trivial ideals)
- No faithful fermionic (double-valued) representations are known!

More specifically: *Rarita-Schwinger* (RS) representation \rightarrow 8 gravitinos and 56 spin- $\frac{1}{2}$ fermions of maximal N = 8 supergravity *at one spatial point* form an unfaithful irreducible spinorial representation of K(E₁₀).

Complete breaking of N = 8 supersymmetry: absorb eight Goldstinos to get eight massive gravitinos \Rightarrow Idem for 8 *massive* gravitinos and 48 spin- $\frac{1}{2}$ fermions \cong 3 × 16 quarks and leptons?!?

N = 8 Supergravity: a strange coincidence? $SO(8) \rightarrow SU(3) \times U(1)$ breaking and 'family-color locking'

$(u,c,t)_L$:	${f 3}_c imes ar{f 3}_f o {f 8} \oplus {f 1} \;,$	$+\frac{1}{2} = \frac{2}{3} - q$
$(\bar{u},\bar{c},\bar{t})_L$:	$ar{3}_c imes 3_f o 8 \oplus 1 \;,$	$-\frac{1}{2} = -\frac{2}{3} + q$
$(d,s,b)_L$:	$3_c imes 3_f ightarrow 6 \oplus ar{3} \; ,$	$-\frac{1}{6} = -\frac{1}{3} + q$
$(\bar{d},\bar{s},\bar{b})_L$:	$ar{3}_c imes ar{3}_f ightarrow ar{6} \oplus 3 \; ,$	$+\frac{1}{6} = \frac{1}{3} - q$
$(e^-,\mu^-,\tau^-)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$-\frac{5}{6} = -1 + q$
$(e^+,\mu^+,\tau^+)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$+\frac{5}{6} = 1 - q$
$(u_e, u_\mu, u_ au)_L$:	$1_c imes ar{3}_f ightarrow ar{3}$,	$-\frac{1}{6} = 0 - q$
$(\bar{ u}_e , \bar{ u}_\mu , \bar{ u}_ au)_L$:	$1_c imes 3_f ightarrow 3 \; ,$	$+\frac{1}{6} = 0 + q$

Supergravity and Standard Model assignments agree if spurion charge is chosen as $q = \frac{1}{6}$ [Gell-Mann (1983)] Realized at $SU(3) \times U(1)$ stationary point! [Warner,HN, NPB259(1985)412]

Embedding SM Symmetries into $K(E_{10})$

[Meissner,HN: Phys.Rev.D91(2015)065029] Spurion charge shift can be realised as $\exp(\frac{1}{6}\omega \mathcal{I})$

$$\mathcal{I} = \frac{1}{2} \big(T \wedge \mathbf{1} \wedge \mathbf{1} + \mathbf{1} \wedge T \wedge \mathbf{1} + \mathbf{1} \wedge \mathbf{1} \wedge T + \mathbf{T} \wedge \mathbf{T} \wedge \mathbf{T} \big) \quad \Rightarrow \quad \mathcal{I}^2 = -\mathbf{1}$$

acting on 56 fermions χ^{ijk} in 8 \wedge 8 \wedge 8 of SU(8), with

 \mathcal{I} is not in SU(8) $\equiv K(E_7)$... but it is in $K(E_{10})$! Also need to extend action of \mathcal{I} to gravitinos.

Why \mathcal{I} belongs to $K(E_{10})$

[Kleinschmidt, HN: Phys.Lett.B747 (2015)]

D=11 fermions in Coulomb gauge split as $(\hat{a} = 1, 2, 3; \bar{a} = 4, ..., 10)$

$$\Psi_A^a = (\Psi_{\alpha i}^{\hat{a}}, \Psi_{\alpha i}^{\bar{a}})$$
 with $i, j = 1, ..., 8$ and $\alpha = 1, 2, 3, 4$

N=8 supergravity fermions from D=11 gravitino [Cremmer, Julia(1979)]

$$\psi_{\hat{a}\alpha}^i \propto \Psi_{\alpha i}^{\hat{a}} - \frac{1}{2} \sum_{\bar{c}=4}^{10} \Gamma_{ij}^{\bar{c}} (\gamma^5 \gamma_{\hat{a}} \Psi_j^{\bar{c}})_{\alpha} \quad , \quad \chi^{ijk} \propto \sum_{\bar{a}=4}^{10} \Gamma_{[ij}^{\bar{a}} \Psi_{k]\alpha}^{\bar{a}}$$

With redefined variables $\Phi_A^a = \Gamma_{AB}^a \Psi_B^a$ (no summation!) [Damour, Hillmann]

$$\delta\chi_{ijk} = (T \wedge T \wedge T)_{ijk}{}^{lmn}\chi_{lmn} \quad \leftrightarrow \quad \delta\Phi_{i\alpha}^{a} = T_{ij}\Phi_{j\alpha}^{a} \qquad (*)$$

Latter formula provides a realization of \mathcal{I} on *all* fermions. For any *real* E_{10} root α we have (with $\alpha^{a} \equiv G^{ab}\alpha_{b}$) [Kleinschmidt,HN]

$$\delta(\alpha)\Phi_A^{\mathbf{a}} = \left(-\frac{1}{2}\alpha^{\mathbf{a}}\alpha_{\mathbf{b}} + \frac{1}{4}\delta_{\mathbf{b}}^{\mathbf{a}}\right)\Gamma(\alpha)_{AB}\Phi_B^{\mathbf{b}}$$

Thus need only find linear combination to reproduce (*), which is possible because there are *infinitely many* real roots in E_{10} . The proof requires over-extended root of $E_{10} \Rightarrow$ no way to realise *q*-shift with finite-dimensional R symmetries! More properly, this representation is acted on by

$$\mathcal{Q}_{RS} = \mathrm{K}(\mathrm{E}_{10}) / \mathcal{N}_{RS} = \mathrm{SO}(32, 288)$$

where \mathcal{N}_{RS} is the 'normal subgroup' generated by the RS ideal in $K(E_{10})$ – but \mathcal{Q}_{RS} is *not* a subgroup of $K(E_{10})$.

In recent work we have been able to embed full SM group $SU(3)_c \times SU(2)_w \times U(1)_Y$ into Q_{RS} together with a family symmetry $SU(3)_f$ which does *not* commute with electroweak symmetries. [Meissner,HN, PRL121(2018)091601]

Big open questions: how does $K(E_{10})$ 'unfold' to give rise to spatial dependence and space-time symmetries via infinite chain of finite groups $Q_{RS} < \cdots < K(E_{10})$?? And how is $K(E_{10})$ broken to SM symmetries??

Curious Gravitinos

[K.Meissner,HN: PRD100(2019)035001]

 $\begin{array}{l} \textbf{Under SU(3)}_c\times \ \textbf{U(1)}_{em} \ \textbf{gravitinos transform as} \\ \left(\textbf{3}_c,\frac{1}{3}\right)\oplus \left(\bar{\textbf{3}}_c,-\frac{1}{3}\right)\oplus \left(\textbf{1}_c,\frac{2}{3}\right)\oplus \left(\textbf{1}_c,-\frac{2}{3}\right) \end{array}$

Unusual features:

- strong and electromagnetic interactions \Rightarrow
- would have been seen *unless* mass is very high, and cosmological abundance *extremely low*
- would be stable against decay into SM matter because of peculiar quantum numbers

 $[\rightarrow$ very different from gravitinos in N = 1 SUGRA models, which are uncharged under SM symmetries, and interact only weakly]

Not the usual Dark Matter Candidate

- No SUSY: all gravitinos have masses $\sim M_{\rm PL}$
- Split as $3 \oplus \overline{3} \oplus 1 \oplus 1$ under $SU(3) \rightarrow could$ form color singlet bound states with ordinary quarks.
- Fractionally charged \Rightarrow stable despite large mass!
- Despite strong and electromagnetic interactions can easily pass through Earth because of large mass.
- Non-relativistic \Rightarrow time of flight measurements?
- DM mass density in solar system $\sim 10^6 \text{ GeV/m}^3 \Rightarrow 10^{-13} \text{ gravitinos/m}^3 \Rightarrow \text{flux } L \lesssim 10^{-9} \text{ m}^{-2} \text{s}^{-1} \rightarrow DM$ detector would get hit only extremely rarely.
- Idea: look for long ionized tracks in ultrastable material (rock, diamond,...?) → need a 'paleo-detector'
 [see e.g.:J.Bramante et al., 1803.08044[hep-ph]; S.Baum et al., 1806.05991[astro-ph.CO]]

Explaining UHECRs?

[K.Meissner, HN: JCAP1909(2019)041]

New mechanism: color triplet gravitinos could explain observed UHECR events via gravitino-antigravitino annihilation in the 'skin' of neutron stars, provided

- Gravitinos get absorbed into stars ...
- ... and get 'condensed' in neutron stars so as to enable them to annihilate in appreciable rates

New features:

- could explain dominant appearance of ions (rather than protons) towards very highest energies
- with some 'reasonable' assumptions calculated event rates come close to the ones observed at Pierre Auger Observatory (in Argentina)
- Hints of E_{10} and $K(E_{10})$ 'in the sky'?

Summary and Outlook

- E_{10} and $K(E_{10})$ unify and generalize known duality symmetries of supergravity and string theory.
- All results obtained so far indicate that E_{10} requires a setting beyond known concepts of space and time.
- \Rightarrow quantum field theory, general covariance and local supersymmetry would have to be *emergent*.
- However: explaining how this emergence works in detail remains an outstanding challenge!
- Intriguing links between $K(E_{10})$ and SM fermions: \rightarrow can E_{10} and $K(E_{10})$ supersede supersymmetry as a guiding principle towards unification?
- Ultimate hope: no multiverse, but an actual explanation why low energy world is the way it is...