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3D Euler’s equations of incompressible 

fluid motion in gravitational field g

Reduction: potential flow

- Laplace equation

- Bernouilli equation



g

Ideal Fluid

2D Hydrodynamics of ideal fluid with free surface

gravity surface tension

- natural parametrization 

of the shape of the free surface

for non-overturning waves 

- nearly 2D flow (swell) in 

ocean

Free Space (vacuum)



g

2D Hydrodynamics of ideal fluid with free surface for 

arbitrary strong waves

gravity surface tension

- shape of free surface if no overturning (single-valued function)

- general parametric form of free surface Γ = 𝜕Ω (instead

of multiple-valued                   ):  

Ω Γ = 𝜕Ω



Boundary conditions at free surface:

Kinematic boundary condition: fluid’s free surface moves with fluid particles

pressure just under the free surface Γ = 𝜕Ω

Dynamic boundary condition: pressure jump at the free surface compare with zero 

pressure outside of fluid (neglecting air density)

Bernouilli equation at the free surface

- unit normal vector to the surface

Ω Γ = 𝜕Ω



Kinematic and dynamic boundary conditions

together with Laplace equation                   form 

a closed set of equations. 

Equivalent  Hamiltonian formulation (V. Zakharov, 

19681) for single-valued surface parametrization:

where - velocity potential at free surface      

(i.e. Dirichlet boundary condition)

1V.E. Zakharov, J. Appl. Mech. Tech. Phys. 9 (2), 190 (1968).



The Hamiltonian =kinetic energy+ potential 

energy,

potential energy in 

the gravitational field
surface tension energy



Normal velocity component:

For general parametrization , converting the Hamiltonian to the integral 

over free surface and using Green’s theorem  (                                                      ):

(a)

(b)



1V.E. Zakharov, J. Appl. Mech.Tech. Phys. 9 (2), 190 (1968).
2W. Craig  and  C.  Sulem. J. Comp. Phys., 108, 73–83 (1993).

The Hamiltonian perturbation theory for single-valued 

parametrization 

The Hamiltonian        depend on the normal velocity        which has 

to be expressed in terms of canonical variables     and      .

But                          is the Dirichlet boundary condition for 

while       is the Neumann boundary condition,                               ,

for       .  

It means that we have to solve the Laplace Eq.                   With 

the Dirichlet                             boundary condition to find        . 

In other words, it is necessary to determine Dirichlet-Neumann 

operator1,2

which relates         and       .  



Series expansion of       in  powers of          

and      allows to develop a perturbation 

theory for small deviations from flat surface.

Small parameter of perturbation theory1:            -

a typical slope of surface elevation.

Perturbation technique:

Flat free surface is stable. 

1V.E. Zakharov, J. Appl. Mech. Tech. Phys. 9 (2), 190 (1968).



Blow-up and foam formation: strongly nonlinear solutions



For strongly nonlinear solutions one cannot use the perturbation theory. 

Instead we use the complex form of 2D hydrodynamics with free surface

to explicitly solve the Laplace Eq.                  at each moment of time and

find the explicit form of Dirichlet-Neumann operator.

Free surface parametrization in 2D:

Complex variable:

Conformal map from lower complex half-plane of  

into fluid domain                    :     provides a particular form of  



Stream function        is defined by 

which ensures the incompressibility condition: 

Define  complex potential as

then

turns into Cauchy-Riemann equations for analyticity of

The complex velocity: 

Relations between real and imaginary parts of analytical functions

At real line w=u through Hilbert transform: 



Analytic in z Analytic in w



Kinematic boundary condition in conformal variables:

Dynamic boundary condition in conformal variables:

Easiest way to obtain: variational principle for the Hamiltonian

Lagrangian and variation                 of 

action   



Symplectic Hamiltonian form1

Or in components

But: not solved for time-derivatives!

1A.I. Dyachenko, P. M. Lushnikov and V. E. Zakharov, Non-Canonical Hamiltonian Structure and Poisson 

Bracket for 2D Hydrodynamics with Free Surface, J. of Fluid Mech. 869, 526-552 (2019). 



Fluid dynamics in conformal variables (exact form of Euler 

equation for fluid with free surface)1:

Hilbert transform:

Hilbert transform in Fourier domain:

1A.I. Dyachenko, E.A. Kuznetsov, M. Spector and V.E. Zakharov,  Phys. Lett. A 221, 73 (1996).



Non-canonical Hamiltonian equations for fluid dynamics in 

conformal variables1:

Poisson bracket

Any functionals of y commute with each other!

1A.I. Dyachenko, P. M. Lushnikov and V. E. Zakharov, Non-Canonical Hamiltonian Structure and Poisson 

Bracket for 2D Hydrodynamics with Free Surface, J. of Fluid Mech. 869, 526-552 (2019). 



1P.M. Lushnikov and N.M. Zubarev, Phys. Rev. Lett., 120, 204504 (2018).

and        - densities of normal and superfluid components

and        - velocities of normal and superfluid components

Another form of the Hamiltonian for the same co-symplectic

operator: 

Free surface of superfluid Helium  41: normal component and superfluid 

component of He 4 shares the same volume of fluid and common free 

surface

Arbitrary nonlinear solutions are exactly integrable in two limits

of the viscosity      of normal component: 



1P.M. Lushnikov Phys. Lett. A, 329, p.49 (2004).
2E.A. Kuznetsov, M.D. Spector, and V.E. Zakharov.  Phys. Rev. E, 49:1283–1290  (1994).

1. Limit of For large kinematic viscosity           :  Reduction to two 

decoupled complex Burgers Eqs in 2D flow1 (при нулевой вязкости2)

Motion of multiple complex poles:

Particular solution                                       , 

Where                    are complex zeros of 

the Hermite function  

Interface turns singular if poles reach real axis                         



2. Non-dissipative two-fluid description of 4He 1,2

1S.E. Korshunov, Europhys. Letters 16, 673 (1991).
2S.E. Korshunov, JETP Letters 75, 496 (2002).

and        - densities of normal and superfluid components

and        - velocities of normal and superfluid components

Incompressibility

- total density

Deep inside Helium:

Assume reference frame with the center of mass:

Relative velocity between components: 

= ( , )y x t



Boundary conditions at the free surface:

Kinematic condition: free surface moves with fluid:

Unit normal vector:

General free surface parametrization in 2D:

Particular  free surface parametrization in 2D:

- must be single-valued function of x



Dynamic boundary condition:

Bernouilli equation for two fluid components1

- pressure jump at interface compare 

with zero pressure outside of fluid

- Bernouilli constant

1L.D. Landau and E.M. Lifshitz, Fluid mechanics, Pergamon (1989).



Laplace equations

+  kinematic and dynamic boundary conditions

a closed set of equations. 

Hamiltonian formulation1 similar to V.E. Zakharov (1968); E.A. 

Kuznetsov, M.D. Spector (1976); E.A. Kuznetsov, P.M. Lushnikov (1995)

where

- Canonical variables with the standard 

symplectic structure

1P.M. Lushnikov and N.M. Zubarev, JETP 156, 711-721 (2019).



The Hamiltonian =kinetic energy+ potential 

energy,

potential energy in the 

gravitational field
surface tension energy

The Hamiltonian can be rewritten as a surface integral:



Kelvin-Helmholtz instability dispersion relation 1 for linear 

perturbations                             : 

1S.E. Korshunov, JETP Letters 75, 496 (2002).
2L.D. Landau and E.M. Lifshitz, Fluid mechanics, Pergamon (1989).

Comparison: dispersion law of the interface between two fluids of density

(upper fluid) and density        (lower fluid)  without average motion 2:

- dispersion law without average motion of Helium components
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Fully nonlinear development of Kelvin-Helmholtz instability : 



Replacing 𝜙 by the harmonic conjugate function 𝜓
(𝜙𝑥 = 𝜓𝑦 and 𝜙𝑦 = −𝜓𝑥)

∇2Φ = 0, ∇2𝜓 = 0,

𝜕Φ

𝜕𝑡
+
(∇Φ)2

2
+
(∇𝜓)

2

2

=
𝑐2

2
−
𝑃𝛼 + 𝑃𝑔

𝜌
at 𝑦 = 𝜂,

𝜂𝑡(1 + 𝜂𝑥
2)−1/2 = 𝜕𝑛Φ at 𝑦 = 𝜂,

𝜕𝜏𝜓 = 0 − tangential derivative at 𝑦 = 𝜂,
Φ → 0 at |𝑥| → ∞ or 𝑦 → −∞,

𝜓 → −𝑐𝑦 for |𝑥| → ∞ and 𝑦 → −∞, where 𝑐 = 2Γ/𝜌.



( ) ( ) / 2.F cy =   Define a pair of new harmonic potentials

Then for zero gravity and surface tension1:

∇2𝐹(+) = 0,

𝐹𝑡
(+)

− 𝑐𝐹𝑦
(+)

+ (∇𝐹(+))2 = 0 at 𝑦 = 𝜂,

𝐹(+) → 0 at |𝑥| → ∞ and 𝑦 → −∞,

∇2𝐹(−) = 0,

𝐹𝑡
(−)

+ 𝑐𝐹𝑦
(−)

+ (∇𝐹(−))2 = 0 at 𝑦 = 𝜂,

𝐹(−) → 0 at |𝑥| → ∞ and 𝑦 → −∞,

( ) ( )

=
= .

y
c F F
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These equations are fully decoupled if either                    or( ) ( )0,            0.F F+ −= =

1P.M. Lushnikov and N.M. Zubarev, PRL, 120, 204504 (2018).

Physical interpretation of these reductions: correspond to either stable or unstable

Branches of the liner dispersion relation ( ) = ,ick  

( ) ( ) ( ) ( )

( ) ( ) ( )

= exp( ) exp( ),

        = exp( ).

a ikx i t a ikx i t

F ca ikx ky i t

  



+ + − −

  

− + −

 + −



( )Im = .t uG G cLaplace growth equation1

for ( , ) = ( , )G u t z u t ict−

1P.M. Lushnikov and N.M. Zubarev, PRL, 120, 204504 (2018).
2P.Ya. Polubarinova-Kochina, Dokl. Akad. Nauk SSSR 47, 254 (1945).
3L.A. Galin, Dokl. Akad. Nauk SSSR 47, 246 (1945).
4B.I. Shraiman and D. Bensimon, Phys. Rev. A 30, 2840 (1984).
5S.D. Howison, SIAM J. Appl. Math. 46, 20 (1986).
6D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986).
7M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, Phys. Rev. Lett. 84, 5106 (2000).
8 I. Krichever, M. Mineev-Weinstein, P. Wiegmannd, A. Zabrodin, Phys. D 198, 1-28 (2004).

Laplace growth equation has infinite number of integral of motion and exact

solutions2-7. It is also integrable in a sense of the close relation with the

dispersionless limit of the integrable Toda hierarchy8.

( ) 0.F − =Using conformal variables for linearly unstable reduction



Spatial profiles of solutions in physical variables   for

Localized solutions of Laplace growth equation
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11, 1.N a= = 

time
time

y y

Multi-finger and multi-cusp set of solutions:



Regularization of cusp by the finite surface tension

Crapper-like solutions 

1E.A. Kochurin, P.M. Lushnikov and N.M. Zubarev (2019).



Hamiltonian formalism for the reduced

dynamical equations1

Modified Hamiltonian:

- standard Hamiltonian for a single fluid

( )Im =t uG G c

For zero surface tension and gravity as well as the reduction

we obtain Laplace growth equation

( , ) = ( , )G u t z u t ict−

- additional term in the Hamiltonian

1A.I. Dyachenko, P. M. Lushnikov and V. E. Zakharov, Non-Canonical Hamiltonian Structure and Poisson 

Bracket for 2D Hydrodynamics with Free Surface, J. of Fluid Mech. 869, 526-552 (2019). 



Returning to Euler equations with free surface for a single fluid:

Water waves even in 2D are not integrable in a sense of inverse 

scattering transform with time-independent spectral parameter 

(fourth order matrix element is zero while 5th order is not zero on 

resonance surfaces) 1. 

Instead our general program is to fully describe 2D

hydrodynamics  of idea fluid with free surface by

the dynamics of  complex singularities outside of fluid and find the 

Infinite set of the integrals of motion. 

1A.I. Dyachenko, Y.V. Lvov and V.E. Zakharov, Phys. D  87, 233-261 (1995).





fluid
0

w=u+iv plane

Fluid free surface
no fluid

γ

Moving integration contour    :

- jump of             at each branch cut

γ



Numerics: rational approximation of branch cuts

Straightforward rational approximation – Pade approximation is 

extremely ill-posed.

But use least-square-based rational approximation1,2 to avoid ill-

posedness as well develop a series of additional conformal maps

Which are compatible with the hydrodynamics and move complex 

singularities away from real axis2,3

1B. Alpert, L. Greengard, and T. Hagstrom, SIAM J. Num. Anal. 37, 1138– 1164 (2000).
2S.A. Dyachenko, P.M. Lushnikov, and A.O. Korotkevich, Stud. Appl. Math., 137, 419-472 (2016).
3P. M. Lushnikov, S.A. Dyachenko and D.A. Silantyev, Proc. Roy. Soc. A, 473, 20170198 (2017).



Example: Motion of two poles coupled with

moving branch cuts

Shape of surface at 

different times:

Complex plane:

Fit to square root singularity

A pair of poles

A pair of branch cuts



Example: Motion of two poles along imaginary axis



Residue of  zw is the complex 

constant of motion

Residue of 𝚷𝒘 is the complex 

constant of motion g=0

Analytical solutions: 

Pole solutions coupled with branch cuts with 𝜶 = 𝟎 1

- analytic functions at 𝑤 = 𝑎𝑘 but generally 

include branch points at other points

with often   

1A.I. Dyachenko, S. A. Dyachenko, P. M. Lushnikov and V. E. Zakharov, Dynamics of Poles in 2D  Hydrodyn.

with Free Surface: New Constants of Motion, J. of Fluid Mech. 874, 891-925 (2019).



Number of independent integrals of motion

2N real integrals

Total number of real integrals of motion:

4N-1 for 𝒈 ≠ 𝟎
4N for 𝒈 = 𝟎

2N-1 real integrals

for 𝒈 ≠ 𝟎
or 2N integrals for 𝒈 = 𝟎



Towards possible integrability of Euler equations 

with free surface
Residues of 𝑧𝑤 provide an infinite number of commuting integrals  

of motion 

as                                                    and

Strong arguments in favor of the Hamiltonian 

integrability!
1C.S. Gardner and J.M. Greene, M.D. Kruskal and R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967).
2V.E. Zakharov and L.D. Faddeev, Funct. Anal. Appl. 5, 280 (1971).
3V.E. Zakharov and A.B. Shabat, Sov. Phys. JETP. 34, 62 (1972).

Commuting integrals of motion are precursor of the Hamiltonian 

integrability1-3.



Integrals of motion in numerics with rational initial conditions

Surface profiles Complex plane

A pair of branch cuts

A pair of poles

Time dependence of  residues

𝒈 = 𝟎

𝒈 ≠ 𝟎



New constants of motion for nonzero surface tension and second

order zero of R for Dyachenko variables1

Complex constants of motion

- Projector operators to functions analytic in upper (lower)

complex half-planes

Second order zero – compatible with surface tension term:

1A.I. Dyachenko, Doklady Math, 53, 115 (2001). 



Returning to variables  of  zw and 𝚷𝒘

Total number of real integrals of motion:

6N-1 for 𝒈 ≠ 𝟎
6N for 𝒈 = 𝟎



New constants of motion for nonzero surface tension and higher

order zeros of for mth order zero of R (m must be even for nonzero 

Surface tension) 

Complex constants of motion

Total number of real integrals of motion:

8N-1 for 𝒈 ≠ 𝟎 8N for 𝒈 = 𝟎 for m>2



Local analysis: persistence of branch cuts 

Generic case:                 

any rational  𝛼 is allowed 

1S. Tanveer, Proc. R. Soc. Lond. A 435, 137-158 (1991).
2S. Tanveer, Proc. R. Soc. Lond. A 441, 501-525 (1993).
3E.A. Kuznetsov, M.D. Spector, and V.E. Zakharov, Physics Letters A 182, 387-393 (1993).

4Moore, D. W. Proc. R. Soc. Lond. A 365, 105 (1979).

5D. I. Meiron, G. R. Baker, and S. A. Orszag, J. Fluid Mech. 114, 283 (1982).

6R. Krasny,  J. Fluid Mech. 167, 65 (1986).

7R. Caflisch and O. Orellana, SIAM J. Math. Anal. 20, 293 (1989).

8M. Shelley, J. Fluid Mech. 244, 493 (1992).
9R.E. Caflisch, G. Baker, and M. Siegel. J. Fluid Mech. 252, 51-78 (1993).

10S. J. Cowley, G. R. Baker, and S. Tanveer, J. Fluid Mech. 378, 233–267 (1999).

Origin of a pair of branch points from zw = 0 was also found in 

Refs. 1-3 and square roots singularities were studied in Refs. 4-10



Example: formation of branch cuts from rational initial conditions

Surface profiles Complex plane

A pair of branch cuts

A pair of poles

Early times

Zoom in

Initial zero of zw

zw



Global analysis: conjecture that generically R and V only have branch cuts and 

poles so they have the same Riemann surface.

Have to study other sheets of Riemann surface. It suggests 

to use nested square root technique qualitatively similar to 

the infinite number of sheets in Stokes wave 1

Spatial profiles at different times
Jump at the branch cut: ¼ power is the indication 

of infinite number of sheets of Riemann surface

Example: jump at the branch cur for moving jet.



Recovering 2/3 power law of limiting Stokes wave from ½ power 

law singularities in the limit of branch point approaching 

the real line 1

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



Expression under the most inner square root:  

g(ζ) ≡ (ζ − iχc)
1/2 + (−2iχc)

1/2 

Two branches at ζ = −iχc :

- no singularity of g(ζ)

- singularity of g(ζ) at ζ = −iχc



More details on solution  

- determined by position of first off-axis singularity

× ···+h.o.t.



Location of singularities in infinite numbers of sheets 

of Riemann surface1

First (physical) sheet Second (non-physical) 

sheet

Third and higher sheets

All singularities are square roots1

1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)



- and all others constants                                  are 

determined by positions of off-axis singularities



Stokes power 2/3

Numerical and analytical



Future directions: splash singularity from plunging of overturning wave



Conclusion and future directions

- Non-canonical Hamiltonian equations for the exact free surface dynamics with non-

canonical Poisson bracket

- Fully nonlinear quantum Kelvin- Helmholtz instability dynamics is reduced to the Laplace 

growth equation through the time-dependent conformal map. Laplace growth equation has 

an infinite number of integrals of motion, the infinite number of exact solutions as well as it 

is integrable. 

- The  infinite number of embedded square roots which recovers Stokes limiting wave 

solution with 2/3 singularity

- For single fluid with free surface we found infinite number of commuting integrals of 

motion which suggests possible integrability

- Both poles and branch cuts are generic in dynamics

- Number of sheets of Riemann surface is expected to be generally  infinite. Construction of 

pole solutions in different sheets of Riemann surface.

-Ultimate goal for the future is the description of  2D surface motion through the dynamics 

of coupled poles and branch cuts



1P. M. Lushnikov, Journal of Fluid Mechanics, 800, 557-594 (2016)
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