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Motivation.

Hard spheres are the fruit flies of statistical
physics.
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Part I. Structure factor.

I.M.Khalatnikov 100, October 18, 2019 4 / 41



Basic facts I.
The pair correlation function is defined as
g(r) = 1 + n̄h(r) = 〈n(r)n(0)〉/n̄2 − n̄δ(r), and two other correlation
functions are useful to describe the scattering data : the total correlation
function h(r) and the direct correlation function
c(r) = −δ2F/[T δn(r)δn(0)]. The functions h(r) and c(r) enter to the
exact Ornstein-Zernike equation.

h(x) = c(x) + n̄
∫

d3y h(y)c(x− y) .

S(q) = 1 +
4πn̄

q

∫ ∞
0

dr r sin(qr)h(r) .

OZ equation can be rewritten in Fourier representation as

S(q) = 1 + n̄h(q) = 1/(1− n̄c(q)) ,

PY closure equation

c(r) = (1− eβV (r))g(r) ,

(where V (r) is an interaction potential between particles and
β = (kBT )−1).
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Basic facts II.

HNC closure looks like
g(r) = eγ(r)−βV (r) ,

where γ(r) = h(r)− c(r).
If the form of the interparticle potential V (r) is known, the closure relation
allows to solve the OZ equation and then to compute S(q).
The interaction potential is very large and repulsive for small interparticle
distance r < σ, (where σ stands for an effective size of the particle hard
core) V (r) = V̄ � kBT , and vanishes outside the interaction region
Rint < r , V (r) = 0.
PY and HNC closure relations imply that

g(r) ∝ e−βV̄ , r < σ ; c(r) = 0 , Rint < r .
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Experimental input.

What is directly measured in any scattering experiment is not the static
structure factor. The measured quantity is the scattering intensity I(q, n̄)
(where as before q is the scattering wave vector, and n̄ is the average
particle concentration).
For a very dilute dispersion, when n̄ = n̄dil is small n̄dilσ

3 � 1, I(q, n̄dil ) is
the scattering intensity from a single particle, termed traditionally as the
particle form factor.
For molecular liquids, or for colloidal dispersions with relatively small
polydispersity, the static structure factor can be determined as
S(q) = n̄dil I(q, n̄)/(n̄ I(q, n̄dil ))

For our approach we need to know experimental I(q) data for q in the
vicinity of the first peak (in the spirit of weak crystallization theory).

I.M.Khalatnikov 100, October 18, 2019 7 / 41



Basic facts III.
It is impossible to calculate accurately the correlation functions h(r), c(r)
in the r -space by the Fourier transformation of the static structure factor,
because S(q) decreases too slow, usually as q−1. Luckily for the function
γ(r) situation is much better. It can be obtained by the Fourier
transformation if the measured experimental data I(q, n̄). The reason is
that γ(r) is a smooth function and its Fourier transform decreases fast,
e.g., for the hard spheres like 1/q3.
For the hard spheres it is sufficient to know the scattering intensity for
q < 10/σ. Then function γ(r) can be calculated directly from the static
structure factor and the exact OZ equation (without an explicit use of any
closure equation !)

γ(r) =
1

2π2r n̄

∫ ∞
0

dq q sin(qr)(S(q)− 2 + 1/S(q)) .

the PY closure reads as

c(ri ) = (1 + γ(ri ))(e−βV (ri ) − 1) ,

the HNC closure is

c(ri ) = eγ(ri )−βV (ri ) − 1− γ(ri ) .
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Our procedure.

To take S(q) near its first peak from scattering experimental data I(q).
To compute γ(r) from OZ equation (without any closure relation)

γ(r) =
1

2π2r n̄

∫ ∞
0

dq q sin(qr)(S(q)− 2 + 1/S(q)) .

To chose (to guess) a trial form of the interparticle potential V (r).
Using a closure relation (PY, HNC, or something else) to compute c(r)
and h(r).
To compute γ(r) = h(r)− c(r), and to re-compute S(q).
To minimize the difference S(q)computed − S(q)experimental over the
variational parameters entering into V (r).
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Analysis of the data.

As the first test of our approach we treat the hard sphere model data
obtained by the exact solution of the OZ and PY equations as our input
”experimental” data.
The effective interaction potential is the hard sphere potential
supplemented by the correction terms

βV (x) = (−Va e−κa (x−1) + Vr e−κr (x−1))/x .

(x here is r/σ).
Fitting four adjustable parameters Va, Vr , κa and κr we estimate the
corrections to the hard sphere potential smaller than βV (r) < 0.05. The
calculated structure factor deviates from its ”experimental” value less
then 0.07% !.
If we take the Lenard-Jones potential without the hard core part,

βV (r) = −Va r−6 + Vr r−12 ,

then the fitting to the ”experimental” data (the exact OZ and PY equation
solution for the hard spheres) gives Va = 0.4, Vr = 1.26, and the
deviation of the calculated structure factor from the ”experimental” data is
about 0.7%, i.e., 10 times worse.
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Pair correlation function for hard-sphere and LJ
potentials.
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Polymethylmetacrylate (PMMA) spheres.
Using our new methodology and depletion interaction potential induced
by the polystyrene we fitted perfectly all available experimental data
(besides our new procedure is simpler and faster than that used before).

FIGURE – S(q) for PMMA spheres and depletion potential. Circles - experimental
data, dotted line - previous numeric simulation, solid line - our new approach.
Volume fraction of PMMA particles φ = 0.2, concentration of PEG cp = 23mg/L.
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Neutron scattering data on liquid krypton.

We perform the fit the experimental data with the LJ potential. The values
of parameters determined from the same fitting

T σ n̄ Va Vr Coordination number
133 3.91 0.72 2.56 1.91 7.3
153 3.55 0.68 3.11 3.77 6.5
183 3.55 0.68 2.64 3.6 4.7

Four parameters were used as adjustable : scaling factor for the
wavevector σ, density n̄ and the amplitudes of the Lenard-Jones potential
Va and Vr .
By common wisdom for the krypton one should expect the Lenard-Jones
interaction potential provides an adequate description of the system.
Surprisingly enough it is not the case ! The catch is in a small q region.
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Scattering intensity for liquid krypton
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Something is wrong?

The exact thermodynamic relation

S(0) = kBT
(
∂n̄
∂P

)
T
.

We take the needed values of the parameters from the handbook and
calculate the structure factor at q = 0 for a few temperature points along
the liquid-gas coexistence line : S(q = 0,T = 133K ) ≈ 0.076,
S(q = 0,T = 153K ) ≈ 0.13, S(q = 0,T = 183K ) ≈ 0.459.
With these exact values for the S(q = 0), we perform again the fitting of
the scattering data in the broad range of the wave vectors. We found also
the interaction potential, and all three curves can be rescaled and
collapsed into a single universal (master) curve.
As a byproduct we found that temperature dependencies of S(q = 0) and
correlation length (inverse width of the first peak) are the same (∝ 1/T ).

I.M.Khalatnikov 100, October 18, 2019 15 / 41



Note on thermodynamic inconsistency : two
routes to compute pressure P

The virial route

P = nT − n2

6

∫ ∞
0

r
dV
dr

4πr2dr .

The compressibility route

T
dn
dP

= 1 + n
∫ ∞

0
h(r)4πr2dr .

It can be verified that B2 and B3 in our approach

P =
4πnT

6

(
σ3γ(σ)−

∫ b

σ

dr (exp(−V (r)/T )− 1) ∂r (r3γ(r))

)

do not depend on the route.
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Interaction potential for liquid krypton.
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Rescaled interaction potential for liquid krypton.
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At low concentration and short range potentials,
S(q) exhibits a very weak dependence on potential
shape.

If the total correlation function h(r) = g(r)− 1 is split into two parts, with
h0(r) = −1 for r < σ, and h1(r) = g(r)− 1 for r > σ, then

S(q) = 1 +
4πn̄

q
j1(q) + n̄h1(q)

(j1 is a spherical Bessel function, and it is exact for hard spheres).
Isosbestic points are defined as values of the wave-vectors q for which
S(q) is invariant under changes of the effective attractive potential well
depth (or e.g., temperature, density).
Since h0(q) = 4πn̄j1(q)/q for hard spheres, the isosbestic points for short
range and not too strong potentials are close to qmσ = mπ.
Closure equations often produce inconsistent results that depend on the
physical path taken). However for systems with short ranged potentials,
our procedure (+ thermodynamic matching of S(q = 0)) ensures
thermodynamic consistency.
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One more result to the same point : Our criterion
of the Fisher - Widom line.

The decay rh(r) to zero can be either exponential (monotonic) if attraction
dominates repulsion, or damped oscillatory otherwise.
The Fisher - Widom line separates the phase diagram into two regions
characterized by these two different types of asymptotic decay (c.f., with
the so-called Boyle point TB in a dilute system : If pair repulsion
dominates the second virial coefficient B2(T ) > 0 (so the pressure is
larger than the ideal gas value), whereas if attraction is dominant then
B2(T ) < 0. In the Boyle point B2(TB) = 0.
Our criterion : the Fisher - Widom crossover occurs close to the line
where the isothermic compressibility χT = (∂p(kBT )−1/∂ρ)−1 takes its
ideal gas value (ρkBT )−1.
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Part II. Drying of colloidal films.
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Characteristic time scales.

Solvent relaxation time, 10−13 − 10−12 s
Hydrodynamic time τs ' σ/vs ∝ 10−12 − 10−11 s
Viscous relaxation time τη ' ρsσ

2/η ∝ 10−10 − 10−8 s
Brownian relaxation time τB ' (2ρp/9ρs)τη

Particle position diffusion time τd ' σ2/D ∝ 10−3 s.
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Why drying colloidal films are interesting?.

Solid thin films on surfaces are often made by spreading a thin liquid film
containing solid colloidal particles onto the surface, and then allowing the
liquid to evaporate (paints, cosmetics and so on).
If there is only one species of colloidal particle with a diffusion constant
D, the time scale for diffusion across the height of the film h2/D.
The evaporation time scale is h/vev , and the competition with diffusion is
quantified by Peclet number Pe = vev h/D. The drying film is near
equilibrium if Pe < 1. If Pe > 1 particles accumulate near the descending
interface at the top of the film.
For a mixture of colloidal particles there is a generic tendency to
segregate. This type of stratification is highly desirable because it allows
the independent control of the properties of the top and the bottom.
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Naive picture.

If Pe < 1 the concentration gradient created by evaporation is quickly
flattened by diffusion. Thus the film remains uniform.
If Pe > 1 - the concentration gradient increases and colloidal particles
accumulate near the top of the film.
If there are two types of colloidal particles of different sizes the larger
colloidal particles (with smaller D and larger Pe) naive arguments predict
that the larger particles accumulate near the surface. However,
experiments show that it is not always the case !?
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Drying of binary colloidal films.
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Definitions and Notations.

Colloidal film
h(t) = h0 − vev t

Colloidal particles are hard spheres r1 and r2 with r2 = αr1 and α > 1 (the
particles volumes ν2 = α3ν1).
The particle volume fractions φi (z, t) and initially the film is uniform
φi (z,0) = φ

(0)
i .

For a dilute mixture

f (φ1, φ2) =
∑

i

1
νi
φi ln(φi ) +

∑
i,j

1
νiνj

aijφiφj

where aij ≡ (2π/3)(ri + rj )
3 is the second virial coefficient.

vi (z)

vi (z) = − Di

kBT
∂µi

∂z
and

µi = ln(φi ) + 1 + 2
∑

j

aijφj

νj
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Equations to solve. I

∂φi

∂t
= − ∂

∂z
(φivi )

(particle conservation law) and

∂φi

∂t
= − ∂

∂z

(
φiDi

kBT
∂µi

∂z

)
We find

v1 = −D1

[(
1
φ1

+ 8
)
∂φ1

∂z
+

(
1 +

1
α

)3
∂φ2

∂z

]
and

v2 = −D2

[(
1 + α)3) ∂φ1

∂z
+

(
1
φ2

+ 8
)
∂φ2

∂z

]
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Equations to solve. II

The time evolution equations

∂φ1

∂t
= D1

∂

∂z

[
(1 + 8φ1)

∂φ1

∂z
+

(
1 +

1
α

)3

φ1
∂φ2

∂z

]

and
∂φ2

∂t
= D2

∂

∂z

[
(1 + α)3

φ2
∂φ1

∂z
+ (1 + 8φ2)

∂φ2

∂z

]
Boundary conditions v1 = v2 = 0 - substrate (z = 0) and v1 = v2 = −vev -
free surface (z = h). and

Pe1 =
vev h0

D1
; Pe2 = αPe1
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Approximate solutions to the equations (I cannot
solve the equations by other means)

Merely looking at the equations, we conclude that the cross interaction
term affects the large colloidal particles stronger than the small ones
(factor (1 + α)3).
In the derived equations, the terms 8∂φi/∂z come from self-interaction
terms aii , while (1 + (1/α))3∂φ2/∂z and (1 + α)3∂φ1/∂z come come from
cross-interaction terms a12 = a21.
If α� 1 and we have a strong concentration gradient for small colloidal
particles, the larger colloidal particles will be driven to substrate. The
condition

(1 + α)3 ∂φ1

∂z
� 1

φ2

∂φ2

∂z
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Phase diagram

When both Peclet numbers are less than 1, the perturbation due to
evaporation is small. When both Peclet numbers are greater than 1, initially
both colloids accumulated at the free surface, but at later times, the
concentration gradient of the smaller colloid becomes large and eventually
drives the big colloids to the bottom.
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Optional slides.
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Another strategy for short range potentials.

V (r) includes hard sphere (V (r) =∞ for r < σ), short range attraction
and repulsion (V = Va + Vr for σ < r < b), and cutoff b (V (r) = 0 for
r > b.
To compute γ(r) from OZ equation with PY closure relation

γ(r) = 1 + n̄
∫

d3y(exp(−βV (y))− 1)γ(y)(exp(−βV (r − y))γ(r − y)− 1)

To find g(r) at r = b and to interpolate γ(r) from σ to b.
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Shear viscosity

FIGURE – Open squares and solid circles - numeric simulations, dashed line - Enskog
expression, solid line - contribution from soft short-wavelength density mode.
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Isosbestic points

FIGURE – S(k) calculated for different kinds of LJ potentials and different
temperatures.

I.M.Khalatnikov 100, October 18, 2019 34 / 41



Colloidal particle (blue) immersed in a solution of
polymer (red) of radius R, in a solvent of smaller
molecules (green).

FIGURE – The particle excludes the polymer from layer of width R (indicated by a
dotted line). Along the x axis, there are gradients of both the polymer contribution to
the pressure, and the solvent contribution.
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Flat wall (blue) in contact with polymer (red) in a
solvent of smaller molecules (green).

FIGURE – The wall excludes the polymer from layer of width R. There are gradients of
both the polymer and solvent concentrations. The wall is assumed stationary, and then
the fluid flows to the left.
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Basic notions of diffusio-phoresis.

The slip velocity results in flow away from low concentrations of the
polymer and towards higher concentrations. This motion can be
understood as a wall-bounded Marangoni effect. It reduces the total
wall/solution surface free energy as the region of low polymer
concentration expands

vs =
R2kBT

2η
∇xρp

The equation rests on the fact that the hydrostatic pressure is uniform
(fast relaxation via solvent flow). Then a gradient of the osmotic pressure
Π is balanced by a counter-gradient in the solvent contribution into the
pressure (it relaxes much slower via diffusion motion of the polymer).
For a colloidal particle Rc � R the drift velocity

U = −vs = Γ∇ lnφp ; Γ = −
φpkBT
2ηR

' −φpDp

where φp = ρpR3 and Dp ∝ kBT/(ηR)
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Estimations.

Γ ' −200µm2s−1, and if the length scale for the concentration gradient
λG ' 100µm.
The Peclet number compares diffusion to diffusio-phoresis motions

Pe =
UλG

Dc
'
φpDp

Dc

For large colloidal particles Dc � Dp and diffusio-phoretic motion is much
faster. Namely, the osmotic pressure difference across the particle
diameter is Rc∇(ρkBT ), and it gives the force F ∝ −R3

c∇(ρkBT ) and

U =
F

6πηRc
∝ −

(
Rc

R

)2
φpkBT
ηR

∇ ln ρp

The estimation (a few µm/s) is wrong ((Rc/R)2 larger) because it
neglects solvent backflow.
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Refined estimations and minimal model.

For the drying film the needed Peclet number is

Pefilm =
vev h0

Dp

if Pefilm < 1 drying is slower than diffusion, and the concentration gradient
will be smoothed out. For Pefilm > 1 accumulation of polymer particles
below the descending interface maintains the concentration gradient and
diffusio-phoresis.
Zero step approach is diffusion of ideal gas in front of a moving
impermeable wall

∂φp

∂t
= Dp

∂2φp

∂z2

The bottom wall is fixed at z = 0, the top wall is the solvent/air interface
zint (t) = h0 − vev t ≡ (1− t∗)h0 (t∗ = vev t/h0).
In the limit Pefilm � 1 (in the regime h0 →∞)

U(z, t) = −vev Pefilmφ0t∗ exp[−|z − zint |/(Dp/vev )]

(φ0 is initial, t = 0 uniform packing fraction, and BCs : zero flux at z = 0
and vev at z = zint ).
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Pefilm − φ0 phase diagram.

FIGURE – The region where the large particles accumulate at the descending interface
at the top of the drying film (yellow), and the region where the large particles are
excluded from the region at the top of drying film just below the interface (blue).

I.M.Khalatnikov 100, October 18, 2019 40 / 41



Qualitative estimations of the colloidal particles
speed.

The speed of a particle of diameter d depends on the balance between
the force f (d) and the drag ξ(d). Let a majority species of diameter dm
dominates the osmotic pressure P.
In the presence of a pressure gradient dP/dz the difference in pressure
between the top and the bottom of a particle is d(dP/dz), so the net
downward force on the particle f (d) ' d3dP/dz.
The friction coefficient is ξ(φ,d) = K (φ,d)ξ0, where ξ0 = 3πdν, ν is water
viscosity, φ is particle volume fraction, K (φ,d) is the sedimentation
coefficient.
At any point, the majority species will be pushed away from the interface
at the speed v(dm) = f (dm)/ξ(dm).
Segregation of the other particles is determined by their velocity relative
to that of of the dominant species. At low density (when K ' 1 :
∆v(dt ) = v(dt )− v(dm) ' v(dm)[(d2

t /d
2
m)− 1].

Species larger than dm move down faster, and smaller size species move
down slower (i.e., segregation with larger particles at the bottom and
smaller particles accumulating at the top).
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