Minimal models for chaotic quantum dynamics in spatially extended many-body systems

John Chalker

Physics Department, Oxford University

Joint work with Amos Chan and Andrea De Luca

Phys Rev X 8 and Phys Rev Lett 121

Studies of 'generic' quantum systems

Nuclear physics

Mesoscopic conductors

Low-D systems

Spatially extended many-body systems

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor
$$K(t) = \langle \left| \sum_n e^{i\theta_n t} \right|^2 \rangle \equiv \langle | \text{Tr} W(t) |^2 \rangle$$

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor
$$K(t) = \langle \left| \sum_n e^{i\theta_n t} \right|^2 \rangle \equiv \langle | \text{Tr} W(t) |^2 \rangle$$

Unitary $N \times N$ random matrices

Characterising spectra

Evolution operator W(t), eigenvalues $e^{i\theta_n t}$

Spectral form factor
$$K(t) = \left\langle \sum_{nm} \mathrm{e}^{i(\theta_n - \theta_m)t} \right
angle$$

Mesoscopic conductor: Thouless time

Characterising dynamics

Hydrodynamics & conserved densities

Dynamics of quantum information

Equilibration under unitary dynamics

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

$$[O(y,t),O(x)]$$

small outside lightcone

Speed limits without relativity

Out-of-time-order correlator (OTOC)

$$C(x, y; t) \equiv [O(y, t)O(x)O(y, t)O(x)]_{av}$$

E.g. with
$$\operatorname{Tr} O(x) = 0$$

and $O(x)^2 = \mathbb{1}$
& likewise for $O(y)$

Larkin & Ovchinnikov (1975)

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix
$$ho(t) = |\Psi(t)
angle \langle \Psi(t)|$$
 for full system

— pure state preserved under time evolution

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix $ho(t)=|\Psi(t)
angle\langle\Psi(t)|$ for full system — pure state preserved under time evolution

Reduced density matrix $\rho_A(t) = \text{Tr}_B \rho(t)$

Entropy of sub-system may grow with time & saturate at long times

Simple physics:

Eliminate conserved densities ⇒ time-dept evolution operator

Simple solution: Random matrices & spatial structure

Simple physics:

Eliminate conserved densities ⇒ time-dept evolution operator

Simple solution: Random matrices & spatial structure

Random unitary circuits

Nahum, Ruhman, Vijay and Haah, PRX (2017) Nahum, Vijay and Haah, PRX (2018) von Keyserlingk et al, PRX (2018)

Simple physics:

Fixed evolution operator w/o conserved densities ⇒ Floquet

Simple solution: Random matrices & spatial structure

Simple physics:

Fixed evolution operator w/o conserved densities ⇒ Floquet

Simple solution: Random matrices & spatial structure

Minimal model

L-site lattice of q-state 'spins'

Floquet operator W is $q^L \times q^L$ unitary matrix

Each $q^2 \times q^2$ unitary $U_{n,n+1}$ independently Haar-distributed

Solve for
$$q \to \infty$$

Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?

Out-of-time-order correlator

Entanglement growth

Spectral correlations?

'Thouless time' in many-body system

with
$$\operatorname{Tr} O(x) = 0$$
 and $O(x)^2 = \mathbb{1}_q$.

Want
$$[O(x,t)O(x)]_{av}$$

with
$$\operatorname{Tr} O(x) = 0$$
 and $O(x)^2 = \mathbb{1}_q$.

Want
$$[O(x,t)O(x)]_{av}$$

Expect
$$\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$$

with
$$\operatorname{Tr} O(x) = 0$$
 and $O(x)^2 = \mathbb{1}_q$.

Want
$$[O(x,t)O(x)]_{av}$$

Expect
$$\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$$

Find for
$$q \to \infty$$
 $[O(x,t)O(x)]_{av} = \begin{cases} 1 & t = 0 \\ 0 & t > 0 \end{cases}$

with
$$\operatorname{Tr} O(x) = 0$$
 and $O(x)^2 = \mathbb{1}_q$.

Want
$$[O(x,t)O(x)]_{av}$$

Expect
$$\lim_{t\to\infty} [O(x,t)O(x)]_{av} \sim [O(x,t)]_{av}[O(x)]_{av} = 0$$

Short times and finite q:
$$[O(x,t)O(x)]_{av} = \begin{cases} 1 & t=0 \\ 0 & t=1 \\ q^{-7} & t=2 \\ 16q^{-11} & t=3 \end{cases}$$

Out-of-time-order correlator

Find for $q \to \infty$

$$[O(y,t)O(x)O(y,t)O(x)]_{av} = \begin{cases} 1 & |t| < |x-y|/2 \\ 0 & |t| \ge |x-y|/2 \end{cases}$$

Butterfly velocity v = 2

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle\langle\psi|W^{\dagger}(t)$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle\langle\psi|W^{\dagger}(t)$

Réyni entropies

Find with $\alpha = 2$ or 3 and q large

$$\langle \mathrm{Tr}_{\mathcal{A}}[
ho_{\mathcal{A}}(t)^{lpha}]
angle = \left\{egin{array}{ll} f_{lpha}(t)q^{-2(lpha-1)t} & t \leq L/4 \ \ K_{lpha}q^{-(lpha-1)L/2} & t > L/4 \end{array}
ight.$$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_A(t) = \text{Tr}_B W(t) |\psi\rangle\langle\psi|W^{\dagger}(t)$

Réyni entropies

Find with $\alpha = 2$ or 3 and q large

$$\langle \mathrm{Tr}_{\mathcal{A}}[
ho_{\mathcal{A}}(t)^{lpha}]
angle = \left\{ egin{array}{ll} f_{lpha}(t)q^{-2(lpha-1)t} & t \leq L/4 \ \ K_{lpha}q^{-(lpha-1)L/2} & t > L/4 \end{array}
ight.$$

Interpretation:

 $\rho_A(t)$ has q^{2t} non-zero eigenvalues, each $\mathcal{O}(q^{-2t})$

 \equiv Mixed (infinite temperature) state for system of 2t sites

Entanglement spreads at speed v = 2

Entanglement growth in quantum circuits

What is lost in $q \to \infty$ limit?

What is lost in $q \to \infty$ limit?

OTOC: Front is sharp, not diffuse

What is lost in $q \to \infty$ limit?

OTOC: Front is sharp, not diffuse

Velocities: 'Naive' value for all speeds (butterfly, entanglement spreading ...)

Spectral form factor

Evolution operator W(t) with eigenvalues $\{e^{i\theta_n}\}$

Spectral form factor
$$K(t) = \sum_{m,n} e^{i(\theta_m - \theta_n)t}$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$K(t) = t$$
 for $0 < t \ll q^L$

Spectral form factor

Evolution operator W(t) with eigenvalues $\{e^{i\theta_n}\}$

Spectral form factor
$$K(t) = \sum_{m,n} e^{i(\theta_m - \theta_n)t}$$

 $\mathsf{Large}\ q\ \Rightarrow\ \mathsf{random}\ \mathsf{matrix}\ \mathsf{behaviour}\ \mathsf{in}\ \mathsf{Floquet}\ \mathsf{model}$

$$K(t) = t$$
 for $0 < t \ll q^L$

- consequence of coupling

Without W_2 find instead

$$K(t)=t^{L/2}$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$K(t) = \left\langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \right\rangle = \left\langle \mathrm{Tr}[W(t)] \mathrm{Tr}[W^{\dagger}(t)] \right
angle$$

$$\mathrm{Tr}[W(t)] \equiv \sum_{a_1 \dots a_t} W_{a_1 a_2} W_{a_2 a_3} \dots W_{a_t a_1}$$

$$\text{Tr}[W^\dagger(t)] \equiv \sum_{b_1 \dots b_t} W^\dagger_{b_1 b_2} W^\dagger_{b_2 b_3} \dots W^\dagger_{b_t b_1}$$

Constructive interference if path $b_1b_2 \dots b_t$ though Fock space is reversed copy of path $a_1a_2 \dots a_t$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation \sim diffusons)

Spectral form factor

$$K(t) = \left\langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \right\rangle = \left\langle \mathrm{Tr}[W(t)] \mathrm{Tr}[W^\dagger(t)] \right
angle$$

Pictorially:

t possible pairings

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

Equivalence to *t*-state Potts model:

t pairings in each domain

& statistical cost for domain walls

Small
$$t \Rightarrow L$$
 uncoupled sites $\Rightarrow K(t) = t^L$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t) = t$

Small
$$t \Rightarrow L$$
 uncoupled sites $\Rightarrow K(t) = t^L$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t) = t$

For chain of weakly coupled sites:

Exact mapping to *t*-state Potts ferromagnet $K(t) = Z_{\text{Potts}}$

Small
$$t \Rightarrow L$$
 uncoupled sites $\Rightarrow K(t) = t^L$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t) = t$

For chain of weakly coupled sites:

Exact mapping to t-state Potts ferromagnet $K(t) = Z_{\text{Potts}}$

$$K(t)$$
 vs t for $q \to \infty$

Small
$$t \Rightarrow L$$
 uncoupled sites $\Rightarrow K(t) = t^L$
Large $t \Rightarrow$ all sites coupled $\Rightarrow K(t) = t$

For chain of weakly coupled sites:

Exact mapping to t-state Potts ferromagnet $K(t) = Z_{\mathrm{Potts}}$

$$K(t)$$
 vs t for $q \to \infty$

$$K(t)$$
 vs t for $q = 3$, $L = 4 - 10$

Summary

Floquet models at large q give solvable ergodic phase

Systematic calculations for $q \to \infty$

Rapid local relaxation

Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour