Minimal models for chaotic quantum dynamics in spatially extended many-body systems

John Chalker

Physics Department, Oxford University

Joint work with Amos Chan and Andrea De Luca

Phys Rev X 8 and Phys Rev Lett 121

Studies of 'generic' quantum systems

Nuclear physics

Mesoscopic conductors

Low-D systems

Spatially extended many-body systems

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i\theta_nt}$

Spectral form factor
$$
K(t) = \langle \left| \sum_n e^{i\theta_n t} \right|^2 \rangle \equiv \langle |\text{Tr} W(t)|^2 \rangle
$$

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i\theta_nt}$

Spectral form factor
$$
K(t) = \langle \left| \sum_n e^{i\theta_n t} \right|^2 \rangle \equiv \langle |\text{Tr} W(t)|^2 \rangle
$$

Unitary $N \times N$ random matrices

Characterising spectra

Evolution operator $W(t)$, eigenvalues $e^{i\theta_nt}$

Spectral form factor
$$
K(t) = \langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \rangle
$$

Mesoscopic conductor: Thouless time

Characterising dynamics

Hydrodynamics & conserved densities

Dynamics of quantum information

Equilibration under unitary dynamics

Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

 $[O(y, t), O(x)]$

small outside lightcone

Speed limits without relativity

Out-of-time-order correlator (OTOC)

$$
C(x, y; t) \equiv [O(y, t)O(x)O(y, t)O(x)]av
$$

E.g. with Tr $O(x) = 0$
and $O(x)^2 = 1$
& likewise for $O(y)$

Larkin & Ovchinnikov (1975)

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix $\rho(t) = |\Psi(t)\rangle \langle \Psi(t)|$ for full system

— pure state preserved under time evolution

Entanglement dynamics

Quantifying 'equilibration' under unitary dynamics

Density matrix $\rho(t) = |\Psi(t)\rangle \langle \Psi(t)|$ for full system

— pure state preserved under time evolution

Reduced density matrix $\rho_A(t) = \text{Tr}_B \rho(t)$

Entropy of sub-system may grow with time & saturate at long times

Simple physics:

Eliminate conserved densities \Rightarrow time-dept evolution operator

Simple solution: Random matrices & spatial structure

Simple physics:

Eliminate conserved densities \Rightarrow time-dept evolution operator

Simple solution: Random matrices & spatial structure

Random unitary circuits

Nahum, Ruhman, Vijay and Haah, PRX (2017) Nahum, Vijay and Haah, PRX (2018) von Keyserlingk et al, PRX (2018)

Simple physics:

Fixed evolution operator w/o conserved densities \Rightarrow Floquet

Simple solution: Random matrices & spatial structure

Simple physics:

Fixed evolution operator w/o conserved densities \Rightarrow Floquet

Simple solution: Random matrices & spatial structure

Minimal model

L-site lattice of q -state 'spins'

Floquet operator W is $q^L \times q^L$ unitary matrix

Each $q^2 \times q^2$ unitary $U_{n,n+1}$ independently Haar-distributed

Solve for $q \to \infty$

Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?

Out-of-time-order correlator

Entanglement growth

Spectral correlations?

'Thouless time' in many-body system

Local operator in q-state Hilbert space at site: $O(x)$ with $\text{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}_q$.

Want $[O(x,t)O(x)]_{\text{av}}$

Local operator in q-state Hilbert space at site: $O(x)$ with $\text{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}_q$.

Want $[O(x, t)O(x)]_{\text{av}}$

Expect $\lim_{t\to\infty}[O(x,t)O(x)]_{\text{av}} \sim [O(x,t)]_{\text{av}}[O(x)]_{\text{av}} = 0$

Local operator in q-state Hilbert space at site: $O(x)$ with $\text{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}_q$.

Want $[O(x, t)O(x)]_{av}$

Expect $\lim_{t\to\infty}[O(x,t)O(x)]_{\text{av}} \sim [O(x,t)]_{\text{av}}[O(x)]_{\text{av}} = 0$

Find for $q \to \infty$ $[O(x,t)O(x)]_{\text{av}} = \begin{cases} 1 & t = 0 \\ 0 & t > 0 \end{cases}$ 0 $t > 0$

Local operator in q-state Hilbert space at site: $O(x)$ with $\text{Tr} O(x) = 0$ and $O(x)^2 = \mathbb{1}_q$.

Want $[O(x, t)O(x)]_{\text{av}}$

Expect $\lim_{t\to\infty} [O(x,t)O(x)]_{\text{av}} \sim [O(x,t)]_{\text{av}}[O(x)]_{\text{av}} = 0$

Short times and finite $q: \quad [O(x,t)O(x)]_{\text{av}} =$ $\sqrt{ }$ \int \overline{a} 1 $t = 0$ 0 $t = 1$ q^{-7} $t = 2$ $16q^{-11}$ $t=3$

Out-of-time-order correlator

Find for $q \to \infty$

$$
[O(y, t)O(x)O(y, t)O(x)]av = \begin{cases} 1 & |t| < |x - y|/2 \\ 0 & |t| \ge |x - y|/2 \end{cases}
$$

Butterfly velocity $v = 2$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_{\cal A}(t)={\rm Tr}_{\cal B}W(t)|\psi\rangle\langle\psi|W^\dagger(t)$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_{\cal A}(t)={\rm Tr}_{\cal B}W(t)|\psi\rangle\langle\psi|W^\dagger(t)$

Réyni entropies

Find with $\alpha = 2$ or 3 and q large

$$
\langle \operatorname{Tr}_{A}[\rho_{A}(t)^{\alpha}] \rangle = \begin{cases} f_{\alpha}(t)q^{-2(\alpha-1)t} & t \leq L/4 \\ K_{\alpha}q^{-(\alpha-1)L/2} & t > L/4 \end{cases}
$$

Entanglement growth in Floquet model

Initial state $|\psi\rangle$ – product state in site basis

Reduced density matrix $\rho_{\cal A}(t)={\rm Tr}_{\cal B}W(t)|\psi\rangle\langle\psi|W^\dagger(t)$

Réyni entropies

Find with $\alpha = 2$ or 3 and q large

$$
\langle \operatorname{Tr}_A[\rho_A(t)^\alpha] \rangle = \begin{cases} f_\alpha(t)q^{-2(\alpha-1)t} & t \leq L/4 \\ K_\alpha q^{-(\alpha-1)L/2} & t > L/4 \end{cases}
$$

Interpretation:

 $\rho_{\mathcal{A}}(t)$ has q^{2t} non-zero eigenvalues, each $\mathcal{O}(q^{-2t})$ \equiv Mixed (infinite temperature) state for system of 2t sites

Entanglement spreads at speed $v = 2$

Entanglement growth in quantum circuits

What is lost in $q \to \infty$ limit?

What is lost in $q \to \infty$ limit?

OTOC: Front is sharp, not diffuse

What is lost in $q \to \infty$ limit?

OTOC: Front is sharp, not diffuse

Velocities: 'Naive' value for all speeds (butterfly, entanglement spreading . . .)

Spectral form factor

Evolution operator $W(t)$ with eigenvalues $\{e^{i\theta_n}\}\$

Spectral form factor
$$
K(t) = \sum_{m,n} e^{i(\theta_m - \theta_n)t}
$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$
K(t)=t \quad \text{ for } 0 < t \ll q^L
$$

Spectral form factor

Evolution operator $W(t)$ with eigenvalues $\{e^{i\theta_n}\}\$

$$
\text{Spectral form factor } K(t) = \sum_{m,n} e^{i(\theta_m - \theta_n)t}
$$

Large $q \Rightarrow$ random matrix behaviour in Floquet model

$$
K(t)=t \quad \text{ for } 0 < t \ll q^L
$$

— consequence of coupling

Without W_2 find instead

$$
K(t)=t^{L/2}
$$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation ∼ diffusons)

Spectral form factor

$$
K(t) = \left\langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \right\rangle = \left\langle \text{Tr}[W(t)] \text{Tr}[W^\dagger(t)] \right\rangle
$$

$$
\mathrm{Tr}[W(t)] \equiv \sum_{a_1 \ldots a_t} W_{a_1 a_2} W_{a_2 a_3} \ldots W_{a_t a_1}
$$

$$
\text{Tr} [W^\dagger(t)] \equiv \textstyle \sum_{b_1 \ldots b_t} W^\dagger_{b_1 b_2} W^\dagger_{b_2 b_3} \ldots W^\dagger_{b_t b_1}
$$

Constructive interference if path $b_1b_2 \ldots b_t$ though Fock space is reversed copy of path $a_1 a_2 \ldots a_t$

Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths (diagonal approximation ∼ diffusons)

Spectral form factor

$$
\mathcal{K}(t) = \left\langle \sum_{nm} e^{i(\theta_n - \theta_m)t} \right\rangle = \left\langle \text{Tr} [W(t)] \text{Tr} [W^\dagger(t)] \right\rangle
$$

Pictorially:

t possible pairings

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

Equivalence to t-state Potts model:

t pairings in each domain

& statistical cost for domain walls

- Small $t \Rightarrow L$ uncoupled sites \Rightarrow $K(t) = t^L$
- Large $t \Rightarrow$ all sites coupled \Rightarrow $K(t) = t$

Small $t \Rightarrow L$ uncoupled sites \Rightarrow $K(t) = t^L$

Large $t \Rightarrow$ all sites coupled \Rightarrow $K(t) = t$

For chain of weakly coupled sites:

Exact mapping to *t*-state Potts ferromagnet $K(t) = Z_{\text{Potts}}$

Small $t \Rightarrow L$ uncoupled sites \Rightarrow $K(t) = t^L$

Large $t \Rightarrow$ all sites coupled \Rightarrow $K(t) = t$

For chain of weakly coupled sites:

Exact mapping to *t*-state Potts ferromagnet $K(t) = Z_{\text{Potts}}$

 $K(t)$ vs t for $q \to \infty$

Small $t \Rightarrow L$ uncoupled sites \Rightarrow $K(t) = t^L$

Large $t \Rightarrow$ all sites coupled \Rightarrow $K(t) = t$

For chain of weakly coupled sites:

Exact mapping to *t*-state Potts ferromagnet $K(t) = Z_{\text{Potts}}$

 $K(t)$ vs t for $q \to \infty$

K(t) vs t for $q = 3$, $L = 4 - 10$

Summary

Floquet models at large q give solvable ergodic phase

Systematic calculations for $q \to \infty$

Rapid local relaxation

Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour