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Studies of ‘generic’ quantum systems

Nuclear physics Mesoscopic conductors
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Characterising spectra
Evolution operator W/(t), eigenvalues e/t

Spectral form factor K(t) = (3", ei((’"—em)t>

Mesoscopic conductor: Thouless time
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Characterising dynamics

Hydrodynamics & conserved densities
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Dynamics of quantum information

Equilibration under unitary dynamics




Speed limits without relativity

Lieb-Robinson bound (1972)

Max propagation speed v for disturbances in short-range lattice models

For local observables at x and y

[O(y; 1), O(x)]

small outside lightcone




Speed limits without relativity

Out-of-time-order correlator (OTOC)

C(x,y:t) = [O(y, 1) O(x)O(y, t) O(x)]av
Cixy;t)

E.g. with TrO(x) =0
and O(x)*=1
& likewise for O(y) t

I T -
t=v|x-y|

Larkin & Ovchinnikov (1975)



Entanglement dynamics

Quantifying ‘equilibration’ under unitary dynamics

Density matrix p(t) = [W(t))(W(t)| for full system

— pure state preserved under time evolution



Entanglement dynamics

Quantifying ‘equilibration’ under unitary dynamics

Density matrix p(t) = [W(t))(W(t)| for full system
— pure state preserved under time evolution
Reduced density matrix pa(t) = Trgp(t)

0 — 00— — 00— — 00— —0—90

A B

Entropy of sub-system may grow with time & saturate at long times



Aim: solvable models for ergodic phase

Simple physics:
Eliminate conserved densities = time-dept evolution operator

Simple solution: Random matrices & spatial structure



Aim: solvable models for ergodic phase

Simple physics:
Eliminate conserved densities = time-dept evolution operator

Simple solution: Random matrices & spatial structure

Random unitary circuits

time

—_——

space

Nahum, Ruhman, Vijay and Haah, PRX (2017)
Nahum, Vijay and Haah, PRX (2018)
von Keyserlingk et al, PRX (2018)
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Fixed evolution operator w/o conserved densities = Floquet
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Aim: solvable models for ergodic phase
Simple physics:
Fixed evolution operator w/o conserved densities = Floquet

Simple solution: Random matrices & spatial structure

Minimal model
L-site lattice of g-state ‘spins’

Floquet operator W is g x g unitary matrix

Each g2 x g? unitary Un,nt1 independently Haar-distributed

Solve for g — oo



Behaviour of Floquet model

Is behaviour consistent with ergodic phase?

Relaxation of local observables

Dynamics of quantum information?
Out-of-time-order correlator

Entanglement growth

Spectral correlations?

‘Thouless time' in many-body system
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Want  [O(x, t)O(x)]ay
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Find for ¢ — o0 [O(x,t)O(X)]ay = { 0 £>0



Relaxation of local observables

Local operator in g-state Hilbert space at site: O(x)

with TrO(x) = 0 and O(x)? = 1.

Want [O(x, ) O(x)]av

Expect lim; o [O(x, t)O(x)]av ~ [O(X, t)]av[O(X)]av = O

Short times and finite g: [O(x,t)O(X)]ay =



Out-of-time-order correlator

Find for g —
1 [t <[x—yl/2

[0y, )O(x)O(y, ) O(x)]av = {
0 [t |x—yl/2

Butterfly velocity v =2



Entanglement growth in Floquet model

Initial state |¢)) — product state in site basis
Reduced density matrix pa(t) = Trg W (t)[) (| WT(t)
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Réyni entropies

Find with @« =2 or 3 and q large
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Entanglement growth in Floquet model

Initial state |¢)) — product state in site basis
Reduced density matrix pa(t) = Trg W (t)[) (| WT(t)

Réyni entropies

Find with @« =2 or 3 and q large
fo(t)g= 21t < 1/4
(Tralpa(t)?]) =

Kog (e=DL2 > /4

Interpretation:

A(t) has g%t non-zero eigenvalues, each O(q~2t
p

= Mixed (infinite temperature) state for system of 2t sites

Entanglement spreads at speed v =2



Entanglement growth in quantum circuits




What is lost in ¢ — oo limit?



What is lost in g — oo limit?

OTOC: Front is sharp, not diffuse

A C(x,yst)

large q limit

expected at finite q =
t




What is lost in g — oo limit?

OTOC: Front is sharp, not diffuse

A C(x,yst)

large q limit

expected at finite q =
t

Velocities: ‘Naive’ value for all speeds
(butterfly, entanglement spreading . ..)




Spectral form factor

Evolution operator W(t) with eigenvalues {e/%"}

Spectral form factor K(t) =>_,, , e/(Om=0n)t

Large ¢ = random matrix behaviour in Floquet model

K(t)=t for0<t<qt



Spectral form factor

Evolution operator W(t) with eigenvalues {e/%"}

Large g =

w,
W,

K(t)=t

Spectral form factor K(t) =

i(Om—0n)t
mme(m n)

random matrix behaviour in Floquet model

for 0 < t < gt

— consequence of coupling

0

3 = Without W, find instead
t=0 K(t) = ¢L/2




Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ~ diffusons)

Spectral form factor
K(t) = (3 o O 0m)t) = (Te[W(t) T[WT(1)])
TI'[W(t)] = Zal.--at W3132 Waza:; e Watal
Te[WH ()] = 0, o, Wi, Wiy -+~ W,

Constructive interference if path bib, ... by though Fock space
is reversed copy of path aiaz...a:



Origin of RMT behaviour?

Constructive interference of diagonal terms in double sum on paths
(diagonal approximation ~ diffusons)

Spectral form factor

K(t) = (3, e =0mt) = (Te[W() Te[WT(2)])

Pictorially:

t possible pairings



New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

pairing A pairing B
I

time

space



New possibilities in many-body systems?

Spatial domains with distinct pairings between time-reversed paths

pairing A pairing B
I

time

space

Equivalence to t-state Potts model:
t pairings in each domain

& statistical cost for domain walls



Many-body ‘Thouless time’

Small t = L uncoupled sites = K(t)=tt
Large t = all sites coupled = K(t)=1t
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Small t = L uncoupled sites = K(t)=tt
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For chain of weakly coupled sites:
Exact mapping to t-state Potts ferromagnet  K(t) = Zpotts
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Many-body ‘Thouless time’
Small t = L uncoupled sites = K(t)=tt
Large t = all sites coupled = K(t)=1t

For chain of weakly coupled sites:
Exact mapping to t-state Potts ferromagnet  K(t) = Zpotts
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Summary

Floquet models at large g give solvable ergodic phase

Systematic calculations for g — oo
Rapid local relaxation
Light cone in OTOC

Ballistic growth of entanglement

Many-body Thouless time

Crossover between uncoupled sites and single RMT behaviour



