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Motivation: Cooper pairing of fermionic gas and unitarian r egime

The discovery of Bose-Einstein condensation (BEC) in alkali
gases of bosonic isotopes 7Li,23Na,87Rb in 1995 was
awarded by the Nobel prize in 2001. One of the key proofs of
the BEC existence was connected with different distribution
functions for superfluid and normal components while the gas
expansion.
To describe both components it is enough to use the
Gross-Pitaevskii (GP) approximation with the Hamiltonian of
Bose gas

Ĥ =

∫ [
−ψ̂† ~

2

2m
∆ψ̂ +

1

2
ψ̂†ψ̂†gψ̂ψ̂

]
dr.

where ψ̂ and ψ̂† are bosonic operators and g = 4π~2as/m

with as being s-scattering length.
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Motivation: Cooper pairing of fermionic gas and unitarian r egime

Hence the GP equation for the condensate wave function ψ
follows after separation:

ψ̂(x,t) = ψ(x,t) + χ̂(x,t),

where ψ(x, t) =
〈
ψ̂(x,t)

〉
and the operator χ̂(x, t),

responsible for the non-condensate atoms (normal
component), has zero expectation value, 〈χ̂(x,t)〉 = 0. At
T → 0 we have the GPE for ψ.
Depending on the sign of as we have different dynamics of the
Bose gas. Negative values of as leads to attraction of atoms
with blow-up behavior while for as > 0 in optical traps the
behavior of the Bose gas is stable.
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Motivation: Cooper pairing of fermionic gas and unitarian r egime
For Fermi gas (with half-integer spin) as < 0 provides the
formation of Cooper pairs and their condensation of bosonic
particles as T → 0. Now there is a big interest to
experimental and theoretical studies of such degenerated
strongly interacting superfluid Fermi gas in optical traps.
In experiments as can be changed by using the Feshbach
resonance. In particular, such bosons have very nontrivial
behavior when (|as|kF )−1 → 0 (kF is the Fermi momentum)
that corresponds to the unitarian regime for which the
chemical potential µ = (1 + β)~

2

m
(6π2n)

2/3 and β = −0.63. In
this case the GPE has the standard form:

i~
∂ψ

∂t
= − ~

2

2(2m)
∆ψ + µ(n)ψ,

where m is a fermion mass (2m is a mass of a fermion pair).
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Motivation: Cooper pairing of fermionic gas and unitarian r egime
In dimensionless variables this equation coincides with the
NLSE, it can be written in the Hamiltonian form

i
∂ψ

∂t
=
δH

δψ∗ ,

where Hamiltonian

H =

∫ [
1

2
|∇ψ|2 + |ψ|2(ν+1)

]
dr,

where υ = 2/3. Applying the transformation
ψ =

√
n(r, t) exp (iϕ(r, t)) remain the Hamiltonian form for

equations for n and ϕ,

∂n

∂t
=
δH

δϕ
,
∂ϕ

∂t
= −δH

δn
,
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Motivation: Cooper pairing of fermionic gas and unitarian r egime
Here the Hamiltonian

H =

∫ [
n (∇ϕ)2

2
+

(∇√
n)

2

2
+ n5/3

]
dr,

where the second term is responsible for the quantum
pressure. Neglecting this term leads to the quasiclassical
equations (Thomas-Fermi approximation) which coincide with
the Euler equations for perfect monoatomic gas with γ = 5/3

∂n

∂t
+ (∇ · n∇ϕ) = 0,

∂ϕ

∂t
+

(∇ϕ)2
2

+
5

3
n2/3 = 0,

where v =∇ϕ has a meaning of the velocity.
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Symmetries and integrals of motion
We would like to remind that the topic of gas expansion was
very popular in the hydrodynamic content in 60-s. The first
classical works were performed by L.V. Ovsyannikov (1956)
and F.J. Dyson (1968).
In 1970 S.I. Anisimov and Yu.I. Lysikov discovered very
interesting phenomenon connected with the nonlinear
angular deformation of the gas cloud while its expansion.
Such behavior directly follows from their remarkable solution
for a gas with specific heat ratio 5/3 based on the symmetry
of the dilatation type r → αr and t→ α2t.
This symmetry (I.E. Dzyaloshinskii, 1970) is well known in
quantum mechanics for the potential V (r) = β/r2. Indeed,
such symmetry first time was exploited by V.P. Ermakov in
1880 to construct solutions for some mechanical systems.

Expansion of the strongly interacting superfluid Fermi gas:symmetries and self-similar regimes –



Symmetries and integrals of motion

This γ = 5/3 is remarkable for both NLSE and its
quasiclassical limit. It turns out that the GPE in the unitarian
limit have two additional symmetries. The first symmetry
forms dilatation group of the scaling type: r →αr and t→α2t.
For the NLSE such symmetry appears as a result of the
conservation of N =

∫
|ψ|2dr so that at d = 3 only the

nonlinear potential ∼ |ψ|4/3 has the same scaling as the
Laplace operator ∆. At d = 2 such symmetry takes place for
the potential ∼ |ψ|2 (the stationary self-focusing of light in the
Kerr nonlinear media). In the general case, νcr = 2/d. The
second symmetry is of the conformal type first time found by
Talanov for the cubic NLSE at d = 2.
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Symmetries and integrals of motion
These symmetries generate two additional integrals of
motion. They can be obtained from the virial theorem

d2

dt2

∫
r2|ψ|2dr = 4H,

(first time obtained by Vlasov-Petrishchev-Talanov in 1971 at
d = 2): ∫

r2|ψ|2dr =2Ht2 + C1t+ C2.

Hence we get at t→ ∞, independently on C1 and C2, linear
dependence in time of the r.m.s size of the gas cloud

〈
r2
〉1/2 ∝t

√
2H/N.

These relations are valid for the GPE and its quasiclassical
limit.Expansion of the strongly interacting superfluid Fermi gas:symmetries and self-similar regimes –



Self-similar quasi-classical solution
Let us search for a quasi-classical solution in the self-similar
form

n =
1

axayaz
f

(
x

ax
,
y

ay
,
z

az

)

which conserves the total number of particles, assuming
scaling parameters ax, ay, az to be functions of t. Then the
continuity equation admits integration

ϕ = ϕ0(t) +
∑

l

ȧlal
2
ξ2l .

Substitution ϕ in the eikonal equation yields 3 ODEs which
are the Newton equations for motion of a particle

äi = −∂U
∂ai

, U =
3λ

2 (axayaz)
2/3
.
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Self-similar quasi-classical solution
Here constant λ > 0 is found from the initial condition. The
density is

n =
1

axayaz

[
1− 3λ

10
ξ2
]3/2

.

The behavior of the density factor f(ξ) (arbitrary units).
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Self-similar quasi-classical solution
The Newton equations have the standard energy integral

E =
1

2

∑

i=1,2,3

ȧi
2 +

3λ

2 (axayaz)
2/3
.

Secondly, for these equations we have the virial identity

d2

dt2

∑

i

a2i = 4E.

Its twice integration gives two constants C1, C2. In the
spherically symmetric case when ax = ay = az ≡ a, the
equations of motion transform into one equation ä = λ

a3
. Its

solution shows that gas cloud expands in radial direction at
t→ ∞ with constant velocity v∞ =

√
2E/3 (ballistic regime).
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Self-similar quasi-classical solution

In the cylindrically symmetric case when ax = ay = a/
√
2,

az = b we have

ä = −∂U
∂a

, b̈ = −∂U
∂b
.

where U = 3λ2 (a2b/2)
−2/3.

This system belongs to the so called Ermakov type for two
degrees of freedom. To integrate this system one needs to
have two autonomous integrals of motion in involution. In our
case we have three integrals of motion:

E =
1

2
(ȧ2 + ḃ2) +

3λ

2 (a2b/2)2/3
.

and two constants C1, C2. The integrals C1, C2 are not
autonomous and can not provide a complete integration.
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Self-similar quasi-classical solution
In terms of the polar coordinates a = r cosΦ, b = r sinΦ

E =
1

2
(ṙ2 + r2Φ̇2) +

3λ

21/3r2 (cos2 Φ sinΦ)2/3
.

The combination Ẽ = Er2 − 1
2
r2ṙ2 = EC2 − C2

1/8 gives the
needed constant (the Ermakov integral) resulting in
conservation law for new "energy"

Ẽ =
1

2

(
dΦ

dτ

)2

+ Ueff (Φ),

with new time τ =
∫ t

0
dt′

2E(t′)2+C1t′+C2
, where

Ueff (Φ) = 3λ21/3 (cos2 Φ sinΦ)
−2/3.
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Self-similar quasi-classical solution

Effective potential Ueff (Φ):

The new time τ is expressed through t ,√
2Ẽτ = arctan

√
2E(t+t0)

χ
− arctan

√
2Et0
χ

where χ2 = Ẽ/E.
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Self-similar quasi-classical solution
If the initial velocity is equal zero C1 = 0 and√
2Ẽτ = arctan

√
2Ẽt
C2

. In this case, as t→ ∞ τ → τ∞ = π

2
√

2Ẽ
.

Hence the τ -period of the oscillations in the potential Ueff (Φ)

is expressed as

T = 2

∫ Φ(+)

Φ(−)

dΦ√
2
[
Ẽ − Ueff (Φ)

] ,

where Φ(±) are reflection points.
At large value of Ẽ oscillations are almost independent on the
details of Ueff (Φ). In this case the angular velocity dΦ

dτ
→

±
√

2Ẽ and the τ -period T → π√
2Ẽ
.
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Self-similar quasi-classical solution
Namely, in this limit T exceeds in two times τ∞. Notice also
that dependence of T with respect to Ẽ is monotonic for the
given potential Ueff (Φ). This means that in the real
experiment in the better case it is possible one to observe
only half of such oscillation, tosc. Thus, a recurrence to the
initial shape is impossible in this case. The gas shape
behavior will be different for cigar and disk initial conditions. In
the cigar case we start from the left reflection point of the
potential Ueff (Φ), in the disk case – from the right reflection
point. Note that at fixed Ẽ starting from any reflection point
we can not reach its opposite reflection point.
The solution presented here was obtained first time by
Anisimov and Lysikov in 1970 for expansion of ideal gas with
γ = 5/3.
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Self-similar quasi-classical solution
In the general anisotropic case, when all the scaling
parameters are different we introduce the spherical
coordinates where the Ermakov reduced energy reads

Ẽ = C2E − 1

8
C2

1 =

(
dθ

dt

)2

+ sin2 θ

(
dϕ

dt

)2

+ Ueff .

Here

Ueff =
3λ

21/3
(
sin2 θ cos θ sin 2ϕ

)2/3 .

As it was shown by Gaffet in 1996, this system has one
additional integral which follows from the Painleve test. As in
the previous limit motion in this potential remains its nonlinear
quasi-oscillation character.
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Comparison with experimental data
The self-similar expansion of a strongly interacting Fermi gas
was observed by the Thomas group (2002).

Ellipsoid (cigar) → sphere → ellipsoid ⊥ to the initial cigar.
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Comparison with experimental data
Exactly on resonance, the mean squared cloud size
〈r2〉 ≡ 〈x2〉+ 〈y2〉+ 〈z2〉 is found (2014) to evolve as

〈r2〉 = 〈r2〉t=0 +
t2

m
〈r · ∇U(r)〉t=0,

where U(r) is the initial trapping potential. This expansion
law coincides with the quasi-classical 〈r2〉 in the unitarian
limit. When the system is far from the unitarian point
(kFas)

−1 = 0 experiments nevertheless give the parabolic
time dependence for 〈r2〉. Small deviation of the data from the
self-similar behavior has been attributed to the contribution of
quantum pressure. This difference may be explained since in
experiment the interaction parameter is not tuned exactly on
resonance 1/(kFas) = 0, with the estimate 1/(kFas) ≃ −0.14.
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Comparison with experimental data

Experimental values τ 2(t) ≡ m[〈r2〉 − 〈r2〉t=0]/〈r · ∇U〉t=0

Black markers correspond to the gas on resonance,
1/(kFas) = 0, red and blue markers to 1/(pFas) ≃ 0.59 and
1/(kFas) ≃ −0.61.
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Conclusion

We have demonstrated that symmetry for the GPE in the
unitarian limit, describing strongly interacting superfluid
Fermi gas, provides existence of the virial theorem.

Independently on the ratio between quantum pressure
and chemical potential while the Fermi superfluid gas
expansion the size of the gas cloud scales linearly with
time asymptotically as t→ ∞ with constant velocity
v∞ = (2H/N)1/2.
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Conclusion

For description of the Fermi gas expansion in the
quasiclassical limit ( the Thomas-Fermi approximation)
we have constructed the self-similar anisotropic solution.
For large time scales the theory matches quite well with
simple ballistic ansatz and also with the initial
quasi-classical distribution of trapping gas.

For the initial condition in the cigar-shape form the
self-similar solution demonstrates successively all the
stages of gas expansion, starting from the distribution
extended along the cigar axis, bypassing the spherically
symmetrical one and ending with the distribution, turned
at angle π/2 with respect to the initial cigar form. Such
behavior was observed first time in experiments.
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HAPPY BIRTHDAY TO YOU, ISAAK MARKOVICH!
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