

Quantum Fluids, Quantum Field Theory and Gravity, Chernogolovka 18 October 2019

LOCALIZATION AND ERGODIC TRANSITIONS IN LOG-NORMAL ROSENZWEIG-PORTER RANDOM MATRIX ENSEMBLE.

> V.E.Kravtsov ICTP, Trieste

Collaboration:

Boris Altshuler (Columbia Uni.) Emilio Cuevas (Murcia) Lev Ioffe (Google) Ivan Khaymovich, (MPI, Dresden)

MBL and sing-particle localization on hierarchical graphs

Altshuler, Gefen, Kamenev, Levitov , 1997

Basko, Aleiner, Altshuler, 2005

Anderson model on hierarchical boundary-less graphs $H = -I \sum_{< r, r'>} c_r^+ c_{r'} + \sum_r \mathcal{E}_r n_r$

Disorder strength W

Localization and ergodic transitions

LOCALIZED, EXTENDED ERGODIC AND EXTENDED NON-ERGODIC PHASES

Finite number of occupied sites in thermodynamic limit

Infinite number of occupied sites but zero fraction of all sites in the thermodynamic limit

Finite fraction of occupied sites

Multifractal NEE

Previous talk: no multifractal phase on granulated **RRG (NL Sigma model)**

Cuevas, VEK, Ioffe,

Gaussian Rosenzweig-Porter RMT: rigorously proven multifractal phase

Multifractal phase in Gaussian RP

V.E.K., I.M. Khaymvich, E. Cuevas, M. Amini, New J. Phys., v.17, 12202 (2015)

Anderson model on RRG and Rosenzweig-Porter ensemble

Two-point Green's function G₀,**r** ~ $exp[-\lambda r]$ on a tree is an effective transmission matrix element

=Rosenzweig-Porter RMT

$$H_{nm} = G_{0,d} \equiv G$$

Role of tails of the lognormal distribution

$$G_{typ} = \exp[\langle \ln G \rangle] \sim N^{\gamma/2}$$

$$\langle G \rangle \sim N^{\gamma_{av}/2}$$

$$\gamma_{av} = (1 - p/2)\gamma$$

Averaged off-diagonal matrix elements have different scaling in N compared to the typical ones: effect of tails in the distribution

Imbedded symmetry

For a tree (or 1D system):

$$G_{0,r} = \prod_{n \in path} G_{nn}$$
$$y = \prod_{n \in path} G_{nn}^{-1} = G_{0r}^{-1}$$

Criterion of localization transition

Localization transition: few sites resonant with a given one (Anderson's criterion):

 $P(\varepsilon)$

W/2

-W/2

$$P_{res} = W^{-1} \int_{0}^{W} d\omega \int_{\omega = |\varepsilon_n - \varepsilon_m|}^{\infty} dG P(G) \sim 1/N$$

Truncation of lognormal at G~W~O(1)

$$\gamma^{(AT)} = \begin{cases} \frac{4}{2-p}, & \text{if } p < 1\\ 4p, & \text{otherwise} \end{cases}$$

 $N\langle G \rangle_{W} \sim N^{0}$

Criterion of ergodic transition

Breit-Wigner width Γ is of the order of disorder strength W (Mott's criterion)

$$\Gamma \equiv N \delta_{typ} \sim \sum_{j} G_{ij}^{2} \rho_{j} \sim \left\langle G^{2} \right\rangle \delta_{typ}^{-1} \sim W$$

$$N\langle G^2 \rangle_W \sim W^2 \sim N^0$$

Truncation of lognormal at G~W~O(1)

G>W lead to states at the Lifshits tail whch do not contribute to δtyp

$$\gamma^{(ET)} = \begin{cases} \frac{1}{1-p}, & \text{if } p < \frac{1}{2}, \\ 4p, & \text{if } p > \frac{1}{2} \end{cases}$$

Phase diagram

KL (Kullback-Leibler) statistics

$$KL1 = \left\langle \sum_{r} \left| \psi_{n}(r) \right|^{2} \ln \left(\frac{\left| \psi_{n}(r) \right|^{2}}{\left| \psi_{n+1}(r) \right|^{2}} \right) \right\rangle \quad 1$$

Sensitive to localization transition

One and the same disorder realization. Neighboring states strongly correlated in extended phase and uncorrelated in localized phase

$$KL2 = \left\langle \sum_{r} \left| \psi(r) \right|^{2} \ln \left(\frac{\left| \psi(r) \right|^{2}}{\left| \varphi(r) \right|^{2}} \right) \right\rangle$$

Sensitive to ergodic transition

Different disorder realizations for ϕ and ψ . Correlated only in the ergodic phase

KL statistics for p=1/2

Data collapse and exponents v $\xi \sim |\gamma - \gamma_c|^{-\nu}$

Data collapse and exponents v at the three-critical point p=1

Merging of two transition points at $\gamma=4$

Two different critical exponents:

For a BL case see Efetov's "Supersymmetry" book, 1990 v=1/2 and v=3/4 (two critical lengths)

Conjecture about critical exponents v

Self consistency eq. and RP

Mirlin and Fyodorov 1992 Tikhonov and Mirlin, 2018

0.15

0.10

0.05

0.00

APPROXIMATIONS?

Conclusion

- Rosenzweig-Porter RMT corresponding to RRG and its p-extension
- "Multifractal", tailed distribution of off-diagonal matrix elements
- RRG symmetry requirement p=1
- Criteria of localization and ergodicity
- Phase diagram for log-normal RP RMT; p=1 is a three-critical point
- Kullback-Leibler statistics of eigenvectors
- Numerical characterization of Anderson and Ergodic transitions in logarithmically-normal RP RMT, critical length and exponents v