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Anderson model on hierarchical
boundary-less graphs
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and ergodic transitions
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3D Anderson model:
NEE states only at |

. the AT point.




LOCALIZED, EXTENDED ERGODIC AND
EXTENDED NON-ERGODIC PHASES

Finite number of occupied sites
in thermodynamic limit

Infinite number of occupied
sites but zero fraction of all sites
in the thermodynamic limit

Finite fraction of occupied sites




Multifractal NEE
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Previous talk:
peNnvltiractal phase on granulated
RIRE(NL Sigma model)

Cuevas,VEK, Ioffe,
B ut 0oo Altshuler (unpublished)
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Gaussian Rosenzweig-Porter RMT:
igorously proven multifractal phase

0 NxN

matrix,

: : uncorrelated
Scaling with random

matrix size entries

Special diagonal:

Simplest non-invariant RMT




V.E.K., .M. Khaymvich, E. Cuevas, M. Amini,
New J. Phys., v.17, 12202 (2015)

Multifractal
ergodic/basis inv phase




Anderson model on RRG and
gosenzweig-Porter ensemble

Two-point Green’s function Go,r ~ exp[—A 7]
on a tree is an effective transmission matrix element

0.25 |

Finite fraction of all distances r on

RRG are at a maximal distance
d=InN/InK

0.20

Approximation: neglect
all other distances!

r

=t

Only two distribution functions: P(g)
for diagonal and P(Go,q) for off-
diagonal matrix elements
=Rosenzweig-Porter RMT




Log-normal distribution of off-
diagonal elements

| - N2 y= 2A(W)
In K

A | W(@GIG,)
Exact for NLoM, g>>1 )\(W) =

Lyapunov
exponent on a
tree with
CN\wn, /] branching K

. p-extension:

P(InG) ~ exp

“multifractal” log-normal
distribution with p=1

m

Good for K=2 up to the

AT point



Role of tails of the lognormal
distribution

G, =expl(InG) ~ N> (G) ~ N*"

vV, =U0=-pl2)y

Averaged off-diagonal matrix elements have
different scaling in N compared to the typical ones:

effect of tails in the distribution




Imbedded symmetry

For a tree (or 1D system):

Basic symmetry F (Y) =F (1/ Y)

on a tree

P(1/G)=G" P(G)

d
(1) =| y%,,,F(y)

A\Inl =m(1-m)/(2g)

NLoM, g>>1 [+)2
P(InG) ~exp }/2

is a symmetry parameter




Localization transition: few
sites resonant with a given one J@ic W' ldw j dG P(G)~1/N

res

(Anderson’s criterion): wle, =&l

Truncation of

lognormal at
G~W~0(1)

5 it p<l1
4p,  otherwise




Breit-Wigner width I is of
the order of disorder
strength W (Mott’s criterion)

Truncation of

lognormal at
G~W~0(1)

G>W lead to states at the Lifshits tail
whch do not contribute to otyp
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Phase diagram

1.0:

p=1 corresponding to RRG is a
three-critical point

ergodic

localized




K ullback-Leibler) statistics

2 e 0
KLl = Z| W (r) |2 In M .Sen.81tlve to 3
— W . (r)[ localization transition

One and the same disorder realization. Neighboring
states strongly correlated in extended phase and
uncorrelated in localized phase

transition

Gl

Different disorder realizations for ¢ and . Correlated
only in the ergodic phase

K12 = <Z|¢,(,,) |2 T ( | Y(r) |2 ]> Sensitive to ergodic




KL statistics for p=1/2
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WEta collapse and exponents v
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-ta Co[lapse and exponents v at

y=0.72
Ve = 3.96

N=512-65536
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Merging of two transition points at y=4

Two different critical exponents:
For a BL case see V:1/2 and V:3/4

Efetov’s

“supersymmetry” | (two critical lengths) §
book, 1990




BONJEcture about critical exponents v

critical |
point i

1




Mirlin and Fyodorov 1992
Tikhonov and Mirlin, 2018
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Zero-dimensional Efetov’s supermatrices:
non-zero space modes are neglected

Zero-dimensional
RP random
matrices

i.i.d. off-diagonal matrix elements

Equivalent
APPROXIMATIONS?




Conclusion

Rosenzweig-Porter RMT corresponding to RRG
and its p-extension

“Multifractal”, tailed distribution of off-diagonal
matrix elements

RRG symmetry requirement p=1
Criteria of localization and ergodicity

Phase diagram for log-normal RP RMT; p=1is a
three-critical point

Kullback-Leibler statistics of eigenvectors

Numerical characterization of Anderson and
Ergodic transitions in logarithmically-normal RP
RMT, critical length and exponents v




