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Main results and motivation
Results: 

some results concerning the computational complexity
of expectation values of the form

Motivation:

● Quantum computing
● Full counting statistics

in quantum systems

● Theoretical aspects
(algorithms, complexity classes)

● Hardware ???

Possibly, a quantum device dedicated to a specific problem
instead of a universal quantum computer?



  

“Quantum supremacy” proposals
Useless problems that can be solved/simulated on quantum devices,
but difficult to model by classical means

Boson sampling [S.Aaronson, 2011]

Scattering of non-interacting bosons
is hard to model on classical computers

Reason: amplitudes are permanents,
which are (presumably) hard to calculate
[Valiant, 1979] (related to P ≠ NP)

Note: sampling is NOT equivalent to calculating amplitudes or
probabilities, so a connection between the complexity of amplitudes
and the complexity of sampling is more subtle



  

Full counting statistics

Counting individual electrons
passing through a microcontact:
effects of fermionic statistics
[Levitov, Lesovik 1994]

Are bosons more complicated than fermions?
(where are we cheated?)

Many studies used free fermion models
→ amplitudes and generating functions
can be expressed as determinants,
easy to compute (             operations)



  

Resolution of the “paradox”
In Boson Sampling, single-particle states are “quantum”
(non-Gaussian, Wick theorem fails),
which is presumably the source of computational complexity

To test this explanation: try non-Gaussian fermionic states
Simplest non-Gaussian fermionic state: 

Such amplitudes are at least as hard as permanents (#P hard)
Direct proof: DI 2016
or reduction to an earlier result of L.Gurvits on mixed discriminants



  

A more general formulation
An “elementary” boson/fermion state        may be classified as
“easy” or “hard” depending on the computational complexity
of the expectation value

where
(      times)

Here      is a general single-particle
operator extended multiplicatively
to the multi-particle space.
Example: evolution operator (but we
don't require unitarity here).

This operator is parameterized by
its             matrix elements



  

A few known examples

●       is a single-boson state: “hard” (permanent, Boson Sampling
by Aaronson)

●       is a coherent bosonic state: “easy” (but requires an
exponentiation at the end of the calculation)

●               : “hard” (elementary non-Gaussian quadruplet discussed
earlier)

●       is any Fermi sea                      : “easy”
(a Gaussian state, reduces to determinants)

Conjecture: in general, all states 
are hard, except for Gaussian states



  

Application to full counting statistics
Setup:
1. Prepare the initial multi-particle product state
2. Apply a given non-interacting evolution
3. Measure the generating function of the particle-number probabilities

One may set

            to ignore
a state and

                
to impose the
zero-particle
constraint



  

Full counting statistics is “hard”

The function                          defined above has the structure
and therefore is expected to be computationally hard for a general
non-Gaussian product state 

Disclaimer: a quantum device does not actually allow us to compute
                         in polynomial time (otherwise we would have built
a quantum computer solving NP complete problems, which is very
improbable). In fact, interesting values are exponentially small and
would still require exponentially many measurements to resolve them.

A variantion of the problem:
What if we only observe a finite number of states?
(keeping all            , except for a finite number of variables)  



  

Full counting statistics in a small 
number of states is easy

For a finite number (   ) of non-zero variables     ,

where     is a finite-rank matrix (of rank    )

Then we can prove that computing                         is easy

● for single-boson      ( = computing                     ):
                   operations

● for any fermionic      :               operations

Remains unproven (but probably true): any bosonic       with
a bounded number of particles



  

A few technical details of the proofs
Result 1:       is “hard”
For any             matrix    , we explicitly construct a                   matrix    ,
such that    

Result 2: for any fermionic product state, 
is computable in               operations

The multi-particle operator may be explicitly written in terms of a small
number of creation and annihilation operators,

where the sum is over      subsets of indexes, and terms of degree 
are computable in      operations in any fermionic product state 



  

Technical details (continued)

Result 3:                                       is computable in                   operations

This is done with the help of an auxiliary polynomial of       variables,

The permanent may be expressed in terms of its diagonal coefficients: 



  

Summary and comments

● Computational complexity of quantum-mechanical amplitudes
may help in identifying setups potentially useful for quantum 
computing

● Full-counting-statistics (FCS) generating functions may be hard
to compute even for non-interacting particles in product states,
if those states are non-Gaussian

● FCS generating functions restricted to a small number of states
are easy to compute in a few considered examples of product
states (single-boson and any fermionic product states)
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