Computational complexity of full counting statistics of quantum particles in product states

Dmitri A. Ivanov, ETH Zürich in collaboration with Leonid Gurvits, the City College of New York
[1] D.A.Ivanov, arXiv:1603.02724, Phys. Rev. A 96, 012322 (2017).
[2] D.A.Ivanov and L.Gurvits, arXiv:1904.06069.

Main results and motivation

Results:

some results concerning the computational complexity of expectation values of the form

$$
\left\langle\psi_{0}\right| \otimes \ldots \otimes\left\langle\psi_{0}\right| e^{a_{i j} c_{i}^{\dagger} c_{j}}\left|\psi_{0}\right\rangle \otimes \ldots \otimes\left|\psi_{0}\right\rangle
$$

Motivation:

- Quantum computing \longrightarrow • Theoretical aspects
- Full counting statistics in quantum systems (algorithms, complexity classes)
- Hardware ???

Possibly, a quantum device dedicated to a specific problem instead of a universal quantum computer?

"Quantum supremacy" proposals

Useless problems that can be solved/simulated on quantum devices, but difficult to model by classical means

Boson sampling [S.Aaronson, 2011]

Scattering of non-interacting bosons is hard to model on classical computers

Reason: amplitudes are permanents, which are (presumably) hard to calculate [Valiant, 1979] (related to $\mathrm{P} \neq \mathrm{NP}$)

Note: sampling is NOT equivalent to calculating amplitudes or probabilities, so a connection between the complexity of amplitudes and the complexity of sampling is more subtle

Full counting statistics

Counting individual electrons passing through a microcontact: effects of fermionic statistics [Levitov, Lesovik 1994]

Many studies used free fermion models \rightarrow amplitudes and generating functions can be expressed as determinants, easy to compute ($O\left(N^{3}\right)$ operations)

Are bosons more complicated than fermions? (where are we cheated?)

Resolution of the "paradox"

In Boson Sampling, single-particle states are "quantum" (non-Gaussian, Wick theorem fails), which is presumably the source of computational complexity

To test this explanation: try non-Gaussian fermionic states Simplest non-Gaussian fermionic state: $\psi_{4}=|1\rangle|2\rangle+|3\rangle|4\rangle$

Such amplitudes are at least as hard as permanents (\#P hard) Direct proof: DI 2016
or reduction to an earlier result of L.Gurvits on mixed discriminants

A more general formulation

An "elementary" boson/fermion state ψ_{0} may be classified as "easy" or "hard" depending on the computational complexity of the expectation value

$$
\langle\Psi| \hat{U}|\Psi\rangle
$$

where

$$
\Psi=\psi_{0} \otimes \psi_{0} \otimes \ldots \otimes \psi_{0} \quad(N \text { times })
$$

Here \hat{U} is a general single-particle operator extended multiplicatively to the multi-particle space.
Example: evolution operator (but we don't require unitarity here).

This operator is parameterized by its $O\left(N^{2}\right)$ matrix elements

A few known examples

- ψ_{0} is a single-boson state: "hard" (permanent, Boson Sampling by Aaronson)
- ψ_{0} is a coherent bosonic state: "easy" (but requires an exponentiation at the end of the calculation)
- $\psi_{0}=\psi_{4}$: "hard" (elementary non-Gaussian quadruplet discussed earlier)
- ψ_{0} is any Fermi sea $f_{1}^{\dagger} \ldots f_{m}^{\dagger}|0\rangle$: "easy"
(a Gaussian state, reduces to determinants)

Conjecture: in general, all states ψ_{0} are hard, except for Gaussian states

Application to full counting statistics

Setup:

1. Prepare the initial multi-particle product state
2. Apply a given non-interacting evolution
3. Measure the generating function of the particle-number probabilities

$$
\chi\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum P\left(n_{1}, \ldots, n_{N}\right) e^{i \lambda_{1} n_{1}+\ldots+i \lambda_{N} n_{N}}=\langle\Psi| \hat{U}_{0}^{-1} e^{i \lambda \cdot n} \hat{U}_{0}|\Psi\rangle
$$

One may set
$\lambda_{i}=0$ to ignore a state and
$\lambda_{i} \rightarrow i \infty$ to impose the zero-particle constraint

Full counting statistics is "hard"

The function $\chi\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ defined above has the structure $\langle\Psi| \hat{U}|\Psi\rangle$ and therefore is expected to be computationally hard for a general non-Gaussian product state Ψ

Disclaimer: a quantum device does not actually allow us to compute $\chi\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ in polynomial time (otherwise we would have built a quantum computer solving NP complete problems, which is very improbable). In fact, interesting values are exponentially small and would still require exponentially many measurements to resolve them.

A variantion of the problem:

What if we only observe a finite number of states?
(keeping all $\lambda_{i}=0$, except for a finite number of variables)

Full counting statistics in a small number of states is easy

For a finite number (k) of non-zero variables λ_{i},

$$
\hat{U}_{0}^{-1} e^{i \lambda \cdot n} \hat{U}_{0}=\exp \left[\hat{U}_{0}^{-1}(i \lambda \cdot n) \hat{U}_{0}\right]=\widehat{1+V}
$$

where V is a finite-rank matrix (of rank k)
Then we can prove that computing $\langle\Psi| \widehat{1+V}|\Psi\rangle$ is easy

- for single-boson ψ_{0} (= computing $\operatorname{Per}[1+V]$): $O\left(N^{2 k+1}\right)$ operations
- for any fermionic $\psi_{0}: O\left(N^{2 k}\right)$ operations

Remains unproven (but probably true): any bosonic ψ_{0} with a bounded number of particles

A few technical details of the proofs

Result 1: ψ_{4} is "hard"
For any $N \times N$ matrix A, we explicitly construct a $4 N^{2} \times 4 N^{2}$ matrix U, such that

$$
\left\langle\left(\psi_{4}\right)^{N^{2}}\right| \hat{U}\left|\left(\psi_{4}\right)^{N^{2}}\right\rangle=\operatorname{Per} A
$$

Result 2: for any fermionic product state, $\langle\Psi| 1+\widehat{\sum_{i=1}^{k}} u_{i} v_{i}^{T}|\Psi\rangle$ is computable in $O\left(N^{2 k}\right)$ operations

The multi-particle operator may be explicitly written in terms of a small number of creation and annihilation operators,

$$
1+\widehat{\sum_{i=1}^{k}} u_{i} v_{i}^{T}=\sum_{\left\{s_{i}\right\}} \hat{u}_{s_{1}}^{\dagger} \ldots \hat{u}_{s_{r}}^{\dagger} \hat{v}_{s_{r}} \ldots \hat{v}_{s_{r}}
$$

where the sum is over 2^{k} subsets of indexes, and terms of degree $r \leq k$ are computable in 2^{r} operations in any fermionic product state

Technical details (continued)

Result 3: $\operatorname{Per}\left(1+\sum_{i=1}^{k} u_{i} v_{i}^{T}\right)$ is computable in $O\left(N^{2 k+1}\right)$ operations
This is done with the help of an auxiliary polynomial of $2 k$ variables,

$$
\begin{aligned}
F\left(a_{1}, \ldots a_{k}, b_{1}, \ldots, b_{k}\right)= & \prod_{x=1}^{N}\left[1+\sum_{s=1}^{k} \sum_{s^{\prime}=1}^{k} a_{s} b_{s^{\prime}} u_{s}(x) v_{s^{\prime}}(x)\right] \\
& =\sum_{\left\{n_{r}\right\},\left\{n_{r}^{\prime}\right\}} F_{n_{1}, \ldots, n_{k}, n_{1}^{\prime}, \ldots, n_{k}^{\prime}}^{n_{1}^{n_{1}} \ldots a_{k}^{n_{k}} b_{1}^{n_{1}^{\prime}} \ldots b_{k}^{n_{k}^{\prime}}}
\end{aligned}
$$

The permanent may be expressed in terms of its diagonal coefficients:

$$
\operatorname{Per}\left(1+\sum_{i=1}^{k} u_{i} v_{i}^{T}\right)=\sum_{\left\{n_{r}\right\}} F_{n_{1}, \ldots, n_{k}, n_{1}, \ldots, n_{k}} \prod_{r=1}^{k} n_{r}!
$$

Summary and comments

- Computational complexity of quantum-mechanical amplitudes may help in identifying setups potentially useful for quantum computing
- Full-counting-statistics (FCS) generating functions may be hard to compute even for non-interacting particles in product states, if those states are non-Gaussian
- FCS generating functions restricted to a small number of states are easy to compute in a few considered examples of product states (single-boson and any fermionic product states)

