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Main results and motivation

Results:

some results concerning the computational complexity
of expectation values of the form

(o @ ... @ (o €9 [iho) @ ... @ |tho)

Motivation:

e Quantum computing ——> « Theoretical aspects
 Full counting statistics (algorithms, complexity classes)
In quantum systems e Hardware ???

Possibly, a quantum device dedicated to a specific problem
Instead of a universal quantum computer?



“*Quantum supremacy” proposals

Useless problems that can be solved/simulated on quantum devices,
but difficult to model by classical means

Boson sampling [S.Aaronson, 2011]

---------------- : Scattering of non-interacting bosons
S A IS hard to model on classical computers
Reason: amplitudes are permanents,
which are (presumably) hard to calculate
[Valiant, 1979] (related to P # NP)
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Note: sampling is NOT equivalent to calculating amplitudes or
probabilities, so a connection between the complexity of amplitudes
and the complexity of sampling is more subtle



Full counting statistics

\\ / Counting individual electrons

e passing through a microcontact:
effects of fermionic statistics

/ \ [Levitov, Lesovik 1994]

_>_ ................
N{: _______ T Many studies used free fermion models
4 P — amplitudes and generating functions
- can be expressed as determinants,
~ easy to compute (O(N?) operations)
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Are bosons more complicated than fermions?
(where are we cheated?)



Resolution of the “paradox”

In Boson Sampling, single-particle states are “quantum”
(non-Gaussian, Wick theorem falls),
which is presumably the source of computational complexity

To test this explanation: try non-Gaussian fermionic states
Simplest non-Gaussian fermionic state: ¥4 = |1) |2) + |3) |4)
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Such amplitudes are at least as hard as permanents (#P hard)

Direct proof: DI 2016
or reduction to an earlier result of L.Gurvits on mixed discriminants




of the expectation value
(YU |¥)
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A more general formulation

An “elementary” boson/fermion state %o may be classified as
“easy” or “hard” depending on the computational complexity
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Here U is a general single-particle
operator extended multiplicatively
to the multi-particle space.

Example: evolution operator (but we
don't require unitarity here).

This operator is parameterized by
its O(N?) matrix elements



A few known examples

» Y9 is a single-boson state: “hard” (permanent, Boson Sampling
by Aaronson)

« Yo is a coherent bosonic state: “easy” (but requires an
exponentiation at the end of the calculation)

« 1o = Y4: “hard” (elementary non-Gaussian quadruplet discussed
earlier)

» %o is any Fermi sea JI AN ¥ “‘easy”
(a Gaussian state, reduces to determinants)

Conjecture: in general, all states
are hard, except for Gaussian states



Application to full counting statistics

Setup:

1. Prepare the initial multi-particle product state
2. Apply a given non-interacting evolution

3. Measure the generating function of the particle-number probabilities

X(A1,.. ., AN) = ZP(nl, Ly ny)eMTT e TANIN. — (| (A]O_lei)"”f]o W)

- - One may set
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Full counting statistics Is “hard”

The function X(A1, ..., An) defined above has the structure (U| U | )
and therefore is expected to be computationally hard for a general
non-Gaussian product state W

Disclaimer: a guantum device does not actually allow us to compute
X(A1, ..., Anx) in polynomial time (otherwise we would have built

a quantum computer solving NP complete problems, which is very
Improbable). In fact, interesting values are exponentially small and
would still require exponentially many measurements to resolve them.

A variantion of the problem:
What if we only observe a finite number of states?
(keeping all \; = 0, except for a finite number of variables)



Full counting statistics in a small
number of states Is easy

For a finite number (k) of non-zero variables A;,
Ot {1, = exp {Uo—l (iX - n) Uo] — 14V

where V' is a finite-rank matrix (of rank k)
Then we can prove that computing (V| 1+V |U) is easy

e for smgle -boson )y ( = computing Per[1 + V] ):
) operations

- for any fermionic o : O(N?*) operations

Remains unproven (but probably true): any bosonic g with
a bounded number of particles



A few technical detalls of the proofs

Result 1: 14 is “hard”
For any N x N matrix A, we explicitly construct a 4 N2 x4N? matrix U,

such that
(™| O

(¢4)N2> — PerA

Result 2: for any fermionic product state, (V|1 + Zle uvl W)
is computable in O(N?¥) operations

The multi-particle operator may be explicitly written in terms of a small
number of creation and annihilation operators,

A

k T A A N A
14+ > . uv, = Z{Si}u};l AL D D,

where the sum is over 2 subsets of indexes, and terms of degree r<k
are computable in 2" operations in any fermionic product state



Technical detalls (continued)

Result 3: Per (1 + Zle uivT) is computable in O(N?**1) operations

(

This is done with the help of an auxiliary polynomial of 2% variables,

N
F(al,...ak,bl,...,bk): H

/ /
— E Fn1 ..... Ng,Me,..., n;al oAy bl bk
{nr},{n;ﬂ}

The permanent may be expressed in terms of its diagonal coefficients:

k k
Per (1 +30 uw’{) D DT U § RN,



Summary and comments

« Computational complexity of qguantum-mechanical amplitudes
may help in identifying setups potentially useful for qguantum
computing

 Full-counting-statistics (FCS) generating functions may be hard
to compute even for non-interacting particles in product states,
If those states are non-Gaussian

 FCS generating functions restricted to a small number of states
are easy to compute in a few considered examples of product
states (single-boson and any fermionic product states)
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