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Motivation

It is due to the influence of Isaak Marcovich
Khalatnikov that I became interested in

I Exact solutions of the Einstein equations in
General Relativity

I Kasner solution and Bianchi-I geometries

I Singularities in General Relativity and
Cosmology



Some history
I 1916–K. Schwarzschild has found static spherically

symmetric solutions of the Einstein equations. The
singularity arises and disappears.

I 1917–H. Weyl has found a solution of the Einstein
equations with plane symmetry. The singularity is present.

I 1918–T. Levi-Civita discovers the same solution.
I 1921–E. Kasner discovers the solution for which the

Weyl-Levi-Civita solution is a particular case.
I 1951–A. Taub rediscovers the Kasner solution.
I 1959–O. Heckmann and E. Schucking study the Bianchi-I

universe in the presence of dust.
I 1963–I.M. Khalatnikov and E.M. Lifshitz study the

Bianchi universes and introduce a convenient parameter
for the Kasner solution.



Introduction
I Even in the absence of matter sources the Einstein

equations of General relativity can have very nontrivial
solutions with singularities.

I The first such solution was the external Schwarzschild
solution for a static spherically symmetric geometry.

I The Schwarzschild solution contains a genuine singularity
in the centre of the spherical symmetry.

I To avoid it and to describe real spherically symmetric
objects like stars, Schwarzschild also invented an internal
solution generated by a ball with constant energy density
and with isotropic pressure. At the boundary of the ball
the pressure disappears and the external and internal
solutions are matched. In this case there is no singularity
in the center of the ball.



I The spatial Kasner solution

ds2 = (x−x0)2p1dt2−dx2−(x−x0)2p2dy 2−(x−x0)2p3dz2,

p1 + p2 + p3 = p21 + p22 + p23 = 1.

has a singularity at x = x0.

I Is it possible to get rid of it, inserting into the empty
spacetime something like a thick slab?

I We have found exact solutions of the Einstein equations
for a thick slab with a constant energy density, but, in
contrast to the Schwarzschild case the singularity does
not vanish.



Einstein equations for spacetimes with spatial

geometry possessing plane symmetry

The metric with plane symmetry, where the metric coefficients
depend on one spatial coordinate x :

ds2 = a2(x)dt2 − dx2 − b2(x)dy 2 − c2(x)dz2.

In the empty spacetime we have two general solutions. One of
them is the Minkowski metric, where a = b = c = 1 and
another one is the Kasner solution:

a(x) = a0(x− x1)p1 , b(x) = b0(x− x1)p2 , c(x) = c0(x− x1)p3 ,

where p1 + p2 + p3 = p21 + p22 + p23 = 1.



The Kasner solution is more often used in a “cosmological
form”:

ds2 = dt2 − a20t
2p1dx2 − b20t

2p2dy 2 − c20 t
2p3 .

The study of Kasner dynamics has led to the discovery of the
oscillatory approach to the cosmological singularity, known
also as the Mixmaster universe. The further development has
brought the establishment of the connection between the
chaotic behaviour of the universe in superstring models and
the infinite-dimensional Lie algebras.
A convenient parametrization of the Kasner indices was
presented by Khalatnikov and Lifshitz:

p1 = − u

1 + u + u2
, p2 =

1 + u

1 + u + u2
, p3 =

u(1 + u)

1 + u + u2
.



The requirement of symmetry in the plane between the y and
z directions implies the condition

p2 = p3.

There are two solutions satisfying this condition. The Rindler
spacetime

p1 = 1, p2 = p3 = 0.

The Rindler spacetime represents a part of the Minkowski
spacetime rewritten in the coordinates connected with an
accelerated observer. There is a coordinate singularity
(horizon) at x = x1.



Another solution is Weyl-Levi-Civita solution

p1 = −1

3
, p2 = p3 =

2

3
.

In terms of the Khalatnikov-Lifshitz parametrization, the
Rindler solution corresponds to u = 0, while the
Weyl-Levi-Civita solution is given by u = 1.



The non-vanishing Christoffel symbols are

Γx
tt = a′a, Γx

yy = −b′b, Γx
zz = −c ′c ,

Γt
tx =

a′

a
, Γy

yx =
b′

b
, Γz

zx =
c ′

c
.

The components of the Ricci tensor are

Rtt = a′′a +
a′b′a

b
+

a′c ′a

c
,

R t
t =

a′′

a
+

a′b′

ab
+

a′c ′

ac
,

Rxx = −a′′

a
− b′′

b
− c ′′

c
,

Rx
x =

a′′

a
+

b′′

b
+

c ′′

c
,

Ryy = −b′′b − a′b′b

a
− b′c ′b

c
,

Ry
y = +

b′′

b
+

a′b′

ab
+

b′c ′

bc
,



Rzz = −c ′′c − a′c ′c

a
− b′c ′c

b
,

Rz
z =

c ′′

c
+

a′c ′

ac
+

b′c ′

bc
.

The Ricci scalar is

R = 2

(
a′′

a
+

b′′

b
+

c ′′

c
+

a′b′

ab
+

a′c ′

ac
+

b′c ′

bc

)
.

The energy-momentum tensor for a fluid with isotropic
pressure is

Tµν = (ρ + p(x))uµuν − p(x)gµν ,

ρ =
4k2

3
= constant

ut = a, ux = uy = uz = 0.



The equation
T ν
µ;ν = 0

for µ = x gives

p′ = −a′

a
(ρ + p),

p = −4k2

3
+

p0
a
,

The Einstein equations are

−b′′

b
− c ′′

c
− b′c ′

bc
=

4k2

3
,

a′b′

ab
+

a′c ′

ac
+

b′c ′

bc
= p,

+
a′′

a
+

c ′′

c
+

a′c ′

ac
= p,

+
a′′

a
+

b′′

b
+

a′b′

ab
= p.



Introducing new functions

A =
a′

a
, B =

b′

b
, C =

c ′

c
,

we can rewrite the Einstein equations

−B ′ − B2 − C ′ − C 2 − BC =
4k2

3
,

AB + AC + BC = p,

A′ + A2 + C ′ + C 2 + AC = p,

A′ + A2 + B ′ + B2 + AB = p.



Solution with isotropic pressure

We consider a slab with −L ≤ x ≤ L,−∞ < y , z <∞.

B = C ,

−2B ′ − 3B2 =
4k2

3
.

Integrating this equation, we obtain

B = C = −2

3
k tan k(x + x0).

b = b0(cos k(x + x0))
2
3 ,

c = c0(cos k(x + x0))
2
3 .



In order to not have singularities inside the slab, we require

[−L + x0, L + x0] ⊂ (−π/2, π/2).

For the scale factor a:

−a′

a

4k

3
tan k(x + x0) +

4k2

9
tan2 k(x + x0) = −4k2

3
+

p0
a
.

a′ − k

3
tan k(x + x0)a − k cot k(x + x0)a

+
3p0
4k

cot k(x + x0) = 0.



The general solution is

a(x) =
3p0
4k2

cos2 k(x + x0)

+
p0

2k2
(cos k(x + x0))

1
3 | sin k(x + x0)|B

(
sin2 k(x + x0);

1

2
,

7

6

)
+a3 sin k(x + x0)(cos k(x + x0))−

1
3 .

where a3 is an integration constant and

B(x , r , s) ≡
∫ x

0

duur−1(1− u)s−1.

is the incomplete Euler Beta-function.



We have two free parameters x0 and a3, which we can fix to
provide the disappearance of the pressure on the border of the
slab.

x0 = L.

It guarantees that
p(−L) = 0.

Hence,

2kL <
π

2
.

a3 =
p0

4k2

(
3 sin 2kL cos1/3 2kL− 2 cos2/3 2kL B(sin2 2kL; 1/2, 7/6)

)
.



a(x) =
3p0
4k2

cos2 k(x + L)

+
p0

2k2
(cos k(x + L))

1
3 sin k(x + L)B

(
sin2 k(x + L);

1

2
,

7

6

)
+

p0
4k2

(
3 sin 2kL cos1/3 2kL− 2 cos2/3 2kL B(sin2 2kL; 1/2, 7/6)

)
× sin k(x + L)(cos k(x + L))−

1
3 .

This is a complete solution of the Einstein equations in the
slab, where the energy density is constant and the pressure
disappears on the boundary between the slab and an empty
space.
The scale factors a, b and c and hence the metric coefficients
are not even and the solution is not invariant with respect to
the inversion

x → −x .



Making the change x → −x we obtain another
solution of our equations.
There is no qualitative difference between these two
solutions.
The choice x0 = ±L is obligatory in order for the
pressure to vanish on both boundaries of the slab
and, hence, the asymmetry of these two solutions is
an essential feature of the problem.
It arises in spite of the initial symmetry of the
Einstein equations and of the position of the slab.



Matching of the solutions in the slab with the vacuum
solutions outside the slab

Our solution inside the slab possesses symmetry in the plane
(y , z). Thus, we shall try to match it at x < −L and at x > L
with one of these three solutions: Minkowski, Rindler or
Weyl-Levi-Civita.
The plane x = −L:

aext(−L) = a(−L), bext(−L) = b(−L), cext(−L) = c(−L),

a′ext(−L) = a′(−L), b′ext(−L) = b′(−L), c ′ext(−L) = c ′(−L).

At x = −L the derivatives of b and c disappear, while the
derivative of a at this point is different from zero. Thus, we
should choose the Rindler geometry for x < −L

ds2 = a2R(x − xR)2dt2 − dx2 − b2R(dy 2 + dz2).



At x = L the derivatives of all three scale factors are
non-vanishing. Thus, for x > L we have a Weyl-Levi-Civita
solution

ds2 = a2WLC (x−xWLC )−2/3dt2−dx2−b2WLC (x−xWLC )4/3(dy 2+dz2).

More detail:

xR = −L− 3p0
4a3k3

.

xWLC = L +
1

k
cot 2kL.

If 2kL < π
2

we can’t avoid having a singularity in the space on
the right side of the slab, at least not if the energy density ρ of
the slab is positive. For an infinitely thin slab, the conclusion
that the singularity is unavoidable for was obtained in by S.
Fulling et al (2015).



Solution with vanishing tangential pressure

Let us consider a more general energy-momentum tensor

T t
t = ρ, T x

x = −px , T y
y = −py , T z

z = −pz .

The energy-momentum tensor conservation condition

p′x + A(ρ + px) + B(px − py ) + C (px − pz) = 0.

In our case B = C and py = pz . We shall consider the case,
where the tangential pressure py = pz = 0.

A′ + A2 + B ′ + B2 + AB = 0.



a′′ − 2

3
tan k(x + x0)a′

+

(
4

3
k2 tan2 k(x + x0)− 2

3

k2

cos2 k(x + x0)

)
a = 0.

Looking for the solution of this second order linear differential
equation in the form

a(x)(cos k(x + x0))α(sin k(x + x0))βekγ(x+x0),

we find two sets of the parameters giving the solution):

α = −1

3
, β = 0, γ =

1√
3
,

α = −1

3
, β = 0, γ = − 1√

3
.



The general solution

a(x) = (cos k(x + x0))−1/3(a4e
1√
3
k(x+x0) + a5e

− 1√
3
k(x+x0)).

A =
a′

a
=

k

3
tan k(x + x0) +

k√
3

a4e
1√
3
k(x+x0) − a5e

− 1√
3
k(x+x0)

a4e
1√
3
k(x+x0) + a5e

− 1√
3
k(x+x0)

.

The transversal pressure

p = − 4k2

3
√

3
tan k(x + x0)

a4e
1√
3
k(x+x0) − a5e

− 1√
3
k(x+x0)

a4e
1√
3
k(x+x0) + a5e

− 1√
3
k(x+x0)

.

In order to have the pressure vanishing at x = −L, we can
again choose x0 = L. Then fixing

a5 = a4e
4kL√

3 ,

we have the pressure vanishing also at x = L.



p =
4k2

3
√

3
tan k(x + L) tanh

k√
3

(L− x),

a(x) = a6(cos k(x + L))−1/3 cosh
1√
3
k(x − L).

For x > L this solution should be matched with the
Weyl-Levi-Civita solution with the same value of the
parameter xWLC .
For x < −L the obtained solution is matched with the Rindler
solution with

xR = −L +

√
3 coth 2kL√

3

k
.

In contrast to the case of the Schwarzschild geometry, we
have here a non-singular internal solution with an anisotropic
pressure, namely with the pressure whose tangental
components are identically equal to zero.



Thick slabs and thin shells

Our solutions are non-singular inside the slab if the condition

2kL <
π

2
.

is satisfied.
If we introduce the notion of the energy of the unit square of
the slab M :

M = 2ρL =
8k2L

3
,

Then

L <
π2

12M
.



If we fix the value of M and begin squeezing the
slab, diminishing L, we do not encounter anything
similar to the Buchdahl limit 1959 for spherically
symmetric configurations. If the relation above is
satisfied at some value of L0, it remains satisfied at
all finite values of L < L0.

If we start increasing the thickness of the slab then
at the value L = π2

12M a singularity arises inside the
slab.



What happens when L→ 0?
In paper by Geroch and Traschen, 1987 it was proven that the
solutions with distributional sources cannot exist for
zero-dimensional (point-like particles) and one-dimensional
(strings) objects, but can exist for two-dimensional (shells)
objects. The reason lies in the non-linearity of the Einstein
equations.
The energy density will tend to the delta function

ρL→0 → Mδ(x).

It was shown by Fulling et al, 2015 that the tangential
pressure for a thin shell should also tend to delta function. Is
is not so in both our solutions.
Our solutions are well defined but do not have a thin shell
limit.



Concluding remarks

I We have found two static solutions for an infinite slab of
finite thickness immersed in the spacetime with plane
symmetry.

I Our solutions do not have a well-defined thin-shell limit.

I We required that the energy density on the slab is
constant and that the pressure disappears at the
boundaries of the slab.

I These conditions are the same used in the Schwarzschild
internal solution.

I We considered two particular additional conditions: one
of them requires the isotropy of the pressure, just like in
the Schwarzschild solution , another requires the
disappearance of the tangential pressure in all the slab.



I For both these requirements we have found exact
solutions.

I One can imagine the existence of a solution where the
transversal and tangential pressures are different functions
of the coordinate x , vanishing on the borders of the slab.

I One cannot exclude that for some solutions of this kind a
smooth transition to the localised matter configurations is
possible.

I It would be interesting to find matter distributions, which
imply the existence of solutions of the Einstein equations
which are matched in the empty regions of the space with
the general spatial Kasner solutions.

I One can prove the existence of such solutions, but it is
difficult to find them explicitly.



I Singularities is an essential part of the

General Relativity.

I It is not always possible to get rid of

singularities.

I The crossing of singularities in General

Relativity and especially in Cosmology is

an important topic.


