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Anderson localization

Philip W. Anderson

1958 “Absence of diffusion
in certain random lattices”

sufficiently strong disorder −→ quantum localization

−→ eigenstates exponentially localized, no diffusion

−→ Anderson insulator

Nobel Prize 1977



Anderson localization

Anderson ’58
Quantum particle moving on a lattice:

connectivity K, nearest-neighbor hopping V , disorder W

H =
∑
i

εic
†
ici +

∑
〈ij〉

V (c
†
icj + c

†
jci)

εi – random energies, distribution width W

Anderson proved localization for V < Vc ∼
W

K lnK

W/K – typical spacing of random energies εj
of sites directly connected to a given site i

V �W/K −→ hybridization suppressed

−→ Anderson localization



Anderson Localization: Extended and localized wave functions

Schrödinger equation

in a random potential

[−~2 ∆

2m
+ U(r)]ψ = Eψ

U

E

x

Ψ

x

delocalized
Ψ

x

localized

|ψ|2 ∼ exp{−|r − r0|/ξ}



Anderson Insulators & Metals
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Scaling theory of localization:
Abrahams, Anderson, Licciardello,
Ramakrishnan ’79

Modern approach:
RG for field theory (σ-model)

quasi-1D, 2D : all states are localized

d > 2: Anderson metal-insulator transition
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delocalized localized

 point
critical disorder

review: Evers, ADM, Rev. Mod. Phys. 80, 1355 (2008)



Many-body localization

Assume that all single-particle states are localized

• External bath with continuous spectrum (e.g., phonons)
−→ inelastic processes −→ dephasing of quantum interference
−→ cutoff for localization −→ thermalization, transport

• Problem of “many-body localization”:
What happens at finite T in the absence of external bath?
Can the system serve as its own thermal bath?

Early work: Fleishman, Anderson ’80:
Inelastic processes inhibited due to discreteness of spectrum;
Localization in many-body space

Many-body localization transition at intermediate T
(or at intermediate disorder at fixed T ) for short-range interaction
Gornyi, ADM, Polyakov ’05; Basko, Aleiner, Altshuler ’06, ...

MBL implies breakdown of ergodicity



Ergodicity and MBL in excited states of many-body systems

Spatially extended systems with short-range interaction
Gornyi, Mirlin, Polyakov, PRL 95, 206603 (2005)
Basko, Aleiner, Altshuler, Ann Phys 321, 1126 (2006)
Oganesyan, Huse, PRB 75, 155111 (2007)

Quantum dots
Altshuler, Gefen, Kamenev, Levitov, PRL 78, 2803 (1997)
Mirlin, Fyodorov, PRB 56, 13393 (1997)
Jacquod, Shepelyansky, PRL 79, 1837 (1997)

Spatially extended systems with power-law interaction
Burin, arXiv:cond-mat/0611387; PRB 91, 094202 (2015)
Yao, Laumann, Gopalakrishnan, Knap, Müller, Demler, Lukin,

PRL 113, 243002 (2014)
Gutman, Protopopov, Burin, Gornyi, Santos, Mirlin, PRB 93, 245427 (2016)

and many further papers

−→ Revival of interest to localization on tree-like graphs

Properties of MBL transition, loc. and deloc. phases, critical regime – ?

One of important questions: Is the delocalized phase ergodic ?



Anderson localization on random regular graphs (RRG)

Random regular graph – random graph with constant connectivity

Locally tree-like (as Bethe lattice) but without boundary

Typical size of loops ∼ lnN

H =
∑
〈i,j〉

(
c+
i cj + c+

j ci

)
+
∑
i=1

εic
+
i ci

εi −→ disorder W

Relation to the MBL problem:

Hilbert space size N ∼ mL where L is “linear size”

Sites ←→ many-body basis states, links ←→ interaction matrix elements

ADM, Fyodorov ’91 Supersymmetry theory of Anderson transition in
sparse random matrix model ( ∼ RRG with fluctuating connectivity)

Delocalized phase (W < Wc): “ergodicity”:

• Wigner-Dyson level statistics

• Wave function statistics: Inverse participation ratio (IPR) P2 = 〈
∑

i |ψ(i)4|〉
P2 ' Nc(W )/N , lnNc ∝ (Wc −W )−1/2 , N � Nc



RRG vs finite Bethe lattice vs infinite Bethe lattice

RRG: finite N , one can study properties of individuals eigenstates,

e.g. IPR P2 = 〈
∑

i |ψn(i)|4〉 −→ this talk

finite BL: finite N , one can study properties of individuals eigenstates,

but they differ crucially from RRG !

Multifractality that depends on W and on position on the tree

Tikhonov and ADM, Phys Rev B 94, 184203 (2016);

Sonner, Tikhonov, and ADM, Phys. Rev. B 96, 214204 (2017)

not considered in this talk

infinite BL: N =∞, one can study statistics of Green functions (e.g. LDOS)

at finite frequency (imaginary or real)



Anderson localization on RRG: Previous numerics

Biroli, Ribeiro-Teixeira, Tarzia,

arXiv:1211.7334

apparent fractality of IPR

−→ non-ergodictiy of delocalized phase ?!

De Luca, Altshuler, Kravtsov, Scardicchio, Phys Rev Lett ’14

“We conclude that the nonergodicity and multifractality persist

in the entire region of delocalized states 0 < W < Wc”



Approaches to Anderson model on RRG

• Direct numerics: Exact diagonalization

• Field theory, Large N −→ saddle point

−→ self-consistency equation

• Analytical solution

• Numerical solution via pool method (population dynamics)



Anderson localization and ergodicity on RRG

K.S. Tikhonov, ADM, M.A. Skvortsov, PRB 94, 220203(R) (2016)

maximal size N = 65 536; for W = 11: N = 262 144

Level statistics:

mean adjacent
gap ratio r

rWD

rP

Crossing point W∗ drifts towards stronger disorder:
W∗ ' 14 (N = 512) −→ W∗ ' 16 (N = 65 536)

Equivalently: for given W non-monotonic dependence r(N)

Explanation: critical point on tree-like structures (or at d → ∞)
has quasi-localized character (Poisson statistics, IPR ∝ N0)



Eigenfunction statistics

IPR P2(W,N)

“flowing fractal exponent”

µ(W,N) = −∂ lnP2(W,N)/∂ lnN :

non-monotonic N -dependence

insu
lato

r

good metal



Correlation length

× level statistics

× eigenfunction statistics

ξ(W ) ∝ (Wc −W )−νd

correlation length

Nc(W ) ∼ mξ(W )

correlation volume

data consistent with νd = 1/2

as expected from the critical behavior of IPR (analytics)

P2 ' Nc(W )/N , lnNc ∝ (Wc −W )−1/2 , N � Nc



RRG: Field-theoretical approach

〈O〉 =
∫ ∏

k[dΦk]e
−L(Φ)UO(Φ) Φi,s = (S

(1)
i,s , S

(2)
i,s , χi,s, χ

∗
i,s) – supervector

Doubling Φi = (Φi,1, Φi,2) for retarded (R) and advanced (A) Green functions

e−L(Φ) =

∫ ∏
i

dεiγ(εi)e
i
2Φ
†
i Λ̂(E−εi)Φi+iω

4 Φ
†
iΦi
∏
〈i,j〉

e−iΦ
†
iΦj Λ = diag(1,−1)RA

RRG, connectivity p = m+ 1, distributions of energies γ(ε) and hoppings h(t)

〈Z〉 =

∫ ∏
i

dΦi

dxi

2π
eipxi exp

{∑
i

[
i

2
Φ†iΛ̂(E − JiK̂)Φi +

i

2

(
ω

2
+ iη

)
Φ†iΦi

+ ln γ̃(
1

2
Φ†iΛ̂Φi)

]
+

p

2N

∑
i6=j

[
e−i(xi+xj)h̃(Φ†iΛ̂Φj)− 1

]
Functional generalization of Hubbard-Stratonovich transformation

−→ integral over functions g(Φ): 〈O〉 =
∫
Dg UO(g)e−NL(g)

L(g) = m+1
2

∫
dΨdΨ′g(Ψ)C(Ψ,Ψ′)g(Ψ′)− ln

∫
dΨ F (m+1)

g (Ψ)

F (s)
g (Ψ) = exp

{
i
2
EΨ†Λ̂Ψ + i

2

(
ω
2

+ iη
)

Ψ†Ψ
}
γ̃(1

2
Ψ†Λ̂Ψ)gs(Ψ)



Field theory for RRG model: Saddle-point treatment

〈O〉 =
∫
Dg UO(g)e−NL(g) Large N −→ saddle-point

treatment

IPR P2 =
1

πν
lim
η→0

η 〈GR(j, j)GA(j, j)〉 GR,A(j, j) = 〈j|(E −H± iη)−1|j〉

〈GR(j, j)GA(j, j)〉 =
∫
Dg U(g)e−NL(g)

U(g) =
∫

[dΨ] 1
16

(
Ψ†1K̂Ψ1

) (
Ψ†2K̂Ψ2

)
F (m+1)
g (Ψ)

g0(Ψ) =
∫
dΦ h̃(Φ†Λ̂Ψ)F

(m)
g0 (Φ) saddle-point equation

identical to the self-consistency equation for infinite Bethe lattice (BL) !

ADM, Fyodorov 1991

Symmetry −→ g0(Ψ) = g0(x, y); x = Ψ†Ψ, y = Ψ†Λ̂Ψ

Laplace (x) - Fourier (y) transf.: g0(x, y)←→ distribution of ImG and ReG

self-consistency equation in the form of Abou-Chacra, Thouless, Anderson 1973



Field theory for RRG model: Inverse Participation Ratio

• W ≥Wc localized phase and critical point:

single saddle-point g0(Φ) = g0(x, y), characteristic x ∼ η−1

−→ U(g0) =
C

η
, C ∼ 1 −→ P2 =

C

πν
∼ 1

• W < Wc delocalized phase: spontaneous symmetry breaking

manifold of saddle points

g0(Ψ) −→ g0T (Ψ) = g0(T̂Ψ) = g0(Ψ
†T̂ T̂Ψ, Ψ†Λ̂Ψ) T̂ Λ̂T̂ = Λ̂

〈GR(j, j)GA(j, j)〉 =
∫
Dge−NL(g)U(g) =

∫
dµ(T̂ ) U(g0T ) e

−π2NηνStr
[
T̂ T̂

]

P2 = 1
πν

limη→0 η 〈GR(j, j)GA(j, j)〉 =
12

N

g
(m+1)
0,xx

π2ν2
=

3

N

〈
ν2
〉

BL

ν2
N � Nξ

Near the transition:
〈
ν2
〉

BL
/ν2 = Nξ � 1 — correlation volume P2 = 3

Nξ

N

Exact relations between RRG and infinite BL problems !

Generalized to correlation functions at arbitrary distance r
and of different eigenstates (energy separation ω)



Wave function correlations: Single wave function

RRG: α(r) = 〈|ψ2
k(i)ψ

2
k(j)|〉 r – distance between i and j

large N −→ expressed in terms of infinite Bethe lattice correlation functions:

K1(r) = 〈GR(i, i)GA(j, j)〉BL = 〈 1
16

(Ψ†i,1K̂Ψi,1)(Ψ
†
j,2K̂Ψj,2)〉BL

K2(r) = 〈GR(i, j)GA(j, i)〉BL = 〈 1
16

(Ψ†j,1K̂Ψi,1)(Ψ
†
i,2K̂Ψj,2)〉BL

• Localized phase:

α(r) =
1

πνN
lim
η→0

ηK1(r, η) ∼
1

N
m−re−r/ζr−3/2

ζ – localization length

• Critical point: ζ =∞ −→ α(r) ∼
1

N

m−r

r3/2

• Delocalized phase, N � Nξ:

α(r) =
1

2π2N2
[K1(r) + 2K2(r)] ∼

Nξ

N2

m−r

r3/2

(r < ξ)
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Wave function correlations: Different wave functions

RRG: β(r, ω) = 〈|ψ2
k(i)ψ

2
l (j)|〉 ω = εk − εl r = distance(i, j)

β(r, ω) =
1

2π2N2
ReK1(r, ω) consider first r = 0

• Critical point

K1(r = 0, ω = 2iη) '
c

(K)
1

η
+

c
(K)
2

η lnµ 1/η

−→ β(0, ω) ∼
1

N2ω lnµ+1 1/ω

µ = 1/2 from ED
and numerical solution of SC equation

• Delocalized phase

β(0, ω) ∼


Nξ/N

2, ω < ωξ

1

N2ω lnµ+1 1/ω
, ω > ωξ

ωξ ∼ N−1
ξ (with log correction)
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Wave function correlations: r – ω plane

β(r, ω) = 〈|ψ2
k(i)ψ

2
l (j)|〉 ω = εk − εl r = distance(i, j)

β(r, ω) =
1

2π2N2
ReK1(r, ω) consider W < Wc

β(r, ω) ∼


mξ−r

N2r3/2
, r < ξ < Lω “metallic” regime

m−r

N2ωL
3/2
ω r3/2

, r < Lω < ξ critical regime

characteristic length scales: ξ ∼ (Wc −W )−1/2 Lω = logm(1/ω)

ω

r

1

ξ

2/3/rr−ξm

ω
2/3/Lr−m

ω
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ω
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N
2
β

(r
,ω

)
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Further dynamical observables: return probability, spectral statistics



Critical behavior

Correlation volume Nξ −→ correlation length ξ

Critical behavior: ξ ∼ (Wc −W )−νdel critical index νdel =?

Self-consistency equation −→ mλβ = 1

λβ – largest eigenvalue of certain integral operator

λβ(W ) ' 1
2
− c1 (W −Wc) + c2

(
β − 1

2

)2
, has minimum at β = 1/2

Localized phase, W > Wc : β real

Critical point, W = Wc : mλ1/2 = 1 Abou-Chacra et al, 1973

Delocalized phase, W < Wc : spontaneous symmetry breaking

β becomes complex: β = 1
2
± iσ , σ '

√
c1
c2

(Wc −W )1/2

Correlation length lnNξ '
π

σ
−→ critical index νdel = 1/2

m = 2 −→ c1 ' 1.59, c2 ' 0.0154 −→ lnNξ ' 31.9 (Wc −W )−1/2

ADM, Fyodorov, 1991, Tikhonov, ADM, 2019



Critical behavior

Numerical verification of νdel = 1/2 ?

Kravtsov, Altshuler, Ioffe, Ann Phys 2018 found νdel ≈ 1. Contradiction?

We want an accurate determination of Wc and νdel

Exact diagonalization for RRG: system sizes not sufficient for this purpose

To approach much closer to the critical point, we use field theory

and solve numerically the self-consistency equation

First step: accurate determination of Wc from the equation mλ1/2 = 1

m = 2

Wc = 18.17± 0.01



Critical behavior: Numerical confirmation of νdel = 1/2

Solve self-consistency equation by pool method (population dynamics)

and thus determine Nξ

lnNξ ∼ (Wc −W )−νdel −→
∂ ln lnNξ

∂ ln τ
= νdel τ = − ln(1−W/Wc)

m = 2 −→ asymptotics lnNξ = 31.9 (Wc −W )−1/2 νdel = 1/2



MBL with short-range interaction: Analogies to RRG

MBL with short-range interaction: XXZ spin chain in random field

Luitz, Laflorencie, Alet, PRB (2015); Mace, Alet, Laflorencie, arxiv:1812.10283

Striking similarities to RRG

• strong drift of crossing point RRG

• critical point similar
to localized phase

• ergodicity of the delocalized phase

• asymmetry of the critical behavior:

νdel ' 0.45 and νloc ' 0.76

to be compared to

νdel = 1/2 and νloc = 1 (RRG)

Numerically found exponents for MBL are close to those for RRG and strongly
violate Harris criterion. Apparently, studied MBL systems are too small to
exhibit asymptotic critical behavior. Intermediate, RRG-like fixed point – ?



MBL with long-range interaction and RRG

Random spin chain with 1/rα interaction, d < α < 2d

Mapping to RRG −→ Wc ∼ L2d−α lnL

Agreement with exact diagonalization

d = 1 , α = 3/2

• Scaling of transition point

• Delocalized side: Ergodicity

• Critical point −→ drift towards larger W∗ = W/L1/2 lnL

delocalized

localized

(b) (b)



Summary

• Localization transition on RRG. Approaches: (i) exact diagonalization,

(ii) analytics, (iii) analytics + population dynamics. Full agreement.

• Ergodicity of the delocalized phase W < Wc ,

achieved for N � Nξ(W ) with lnNξ ∝ (Wc −W )−1/2

• Critical regime (of nearly localized character) for N � Nξ(W )

−→ peculiar crossover from criticality to ergodicity

• Detailed understanding of eigenfunction fluctuations and correlations,

and level statistics.

• RRG as a very intricate d =∞ limit of Anderson localization in d dimensions

• Index νdel = 1/2 confirmed numerically. Large corrections to scaling.

Accurate evaluation of Wc = 18.17± 0.01 (for m = 2) and of Nξ up to 1019

• RRG as a toy-model of MBL. Quantitative connections to long-range MBL.

Strong qualitative analogies with short-range MBL.


